首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9619篇
  免费   771篇
  国内免费   729篇
  2024年   17篇
  2023年   111篇
  2022年   262篇
  2021年   505篇
  2020年   341篇
  2019年   395篇
  2018年   435篇
  2017年   275篇
  2016年   407篇
  2015年   608篇
  2014年   678篇
  2013年   670篇
  2012年   886篇
  2011年   807篇
  2010年   458篇
  2009年   406篇
  2008年   491篇
  2007年   396篇
  2006年   380篇
  2005年   320篇
  2004年   262篇
  2003年   193篇
  2002年   182篇
  2001年   185篇
  2000年   160篇
  1999年   176篇
  1998年   83篇
  1997年   85篇
  1996年   75篇
  1995年   91篇
  1994年   86篇
  1993年   58篇
  1992年   87篇
  1991年   77篇
  1990年   68篇
  1989年   44篇
  1988年   56篇
  1987年   36篇
  1986年   42篇
  1985年   53篇
  1984年   26篇
  1983年   17篇
  1982年   21篇
  1981年   11篇
  1979年   11篇
  1978年   14篇
  1977年   10篇
  1974年   11篇
  1969年   5篇
  1968年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Pto is a serine/threonine kinase that mediates resistance in tomato to strains of Pseudomonas syringae pv. tomato expressing the (a)virulence proteins AvrPto or AvrPtoB. DNA shuffling was used as a combinatorial in vitro genetic approach to dissect the functional regions of Pto. The Pto gene was shuffled with four of its paralogs from a resistant haplotype to create a library of recombinant products that was screened for interaction with AvrPto in yeast. All interacting clones and a representative sample of noninteracting clones were sequenced, and their ability to signal downstream was tested by the elicitation of a hypersensitive response in an AvrPto-dependent or -independent manner in planta. Eight candidate regions important for binding to AvrPto or for downstream signaling were identified by statistical correlations between individual amino acid positions and phenotype. A subset of the regions had previously been identified as important for recognition, confirming the validity of the shuffling approach. Three novel regions important for Pto function were validated by site-directed mutagenesis. Several chimeras and point mutants exhibited a differential interaction with (a)virulence proteins in the AvrPto and VirPphA family, demonstrating distinct binding requirements for different ligands. Additionally, the identification of chimeras that are both constitutively active as well as capable of binding AvrPto indicates that elicitation of downstream signaling does not involve a conformational change that precludes binding of AvrPto, as previously hypothesized. The correlations between phenotypes and variation generated by DNA shuffling paralleled natural variation observed between orthologs of Pto from Lycopersicon spp.  相似文献   
962.
963.
Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.  相似文献   
964.
A method for the production of high-purity isomalto-oligosaccharides (IMO) involving the transglucosylation by transglucosidase and yeast fermentation was proposed. The starch of rice crumbs was enzymatically liquefied and saccharified, and then converted to low-purity IMO syrup by transglucosylation. The low-purity IMO produced either from rice crumbs or tapioca flour as the starch source could be effectively converted to high-purity IMO by yeast fermentation to remove the digestible sugars including glucose, maltose, and maltotriose. Both Saccharomyces carlsbergensis and Saccharomyces cerevisiae were able to ferment glucose in the IMO syrup. Cells of S. carlsbergensis harvested from the medium of malt juice were also able to ferment maltose and maltotriose. A combination of these two yeasts or S. carlsbergensis alone could be used to totally remove the digestible sugars in the IMO, coupled with the production of ethanol. The resultant high-purity IMO, including mainly isomaltose, panose, and isomaltotriose made up more than 98% w/w of the total sugars after a 3-day fermentation. When the low-purity IMO was produced from the starch of tapioca flour, 3-day fermentation under the same conditions resulted in IMO with purity lower than that from rice crumbs. For low-purity IMO from rice crumbs, fermentation with washed S. carlsbergensis cells harvested at log phase was the most effective. However, for the low-purity IMO from tapioca flour, incubation with S. cerevisiae for the first 24 h and then supplementing with an equal amount of S. carlsbergensis cells for further fermentation was the most effective approach for producing high-purity IMO.  相似文献   
965.
Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.  相似文献   
966.
Dokladda K  Green KA  Pan DA  Hardie DG 《FEBS letters》2005,579(1):236-240
The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.  相似文献   
967.
Cygnar KD  Gao X  Pan D  Neufeld TP 《Genetics》2005,170(2):733-740
The protein phosphatase 2A (PP2A) regulatory subunit Tap42 is essential for target of rapamycin (TOR)-mediated signaling in yeast, but its role in higher eukaryotes has not been established. Here we show that Tap42 does not contribute significantly to TOR signaling in Drosophila, as disruption of the Tap42 gene does not cause defects in cell growth, metabolism, or S6-kinase activity characteristic of TOR inactivation. In addition, Tap42 is not required for increased cell growth in response to activation of TOR signaling. Instead, we find that Tap42 mutations cause disorganization of spindle microtubules in larval neuroblasts, leading to a preanaphase mitotic arrest in these cells. Loss of Tap42 ultimately results in increased JNK signaling, caspase activation, and cell death. These phenotypes are associated with increased accumulation and nuclear localization of PP2A in Tap42 mutant cells. Our results demonstrate that the role of Tap42 in TOR signaling has not been conserved in higher eukaryotes, indicating fundamental differences in the mechanisms of TOR signaling between yeast and higher eukaryotes.  相似文献   
968.
969.
Yu BZ  Pan YH  Janssen MJ  Bahnson BJ  Jain MK 《Biochemistry》2005,44(9):3369-3379
The family of secreted 14 kDa phospholipase A(2) (PLA2) enzymes have a common motif for the catalytic site but differ in their disulfide architecture. The functional significance of such structural changes has been analyzed by comparing the kinetic and spectroscopic properties of a series of disulfide mutants engineered into the sequence of pig pancreatic IB PLA2 to resemble the mammalian paralogues of the PLA2 family [Janssen et al. (1999) Eur. J. Biochem. 261, 197-207, 1999]. We report a detailed comparison of the functional parameters of pig iso-PLA2, as well as several of the human homologues, with these disulfide engineered mutants of pig IB PLA2. The crystal structure of the ligand free and the active site inhibitor-MJ33 bound forms of PLA2 engineered to have the disulfide bonding pattern of group-X (eng-X) are also reported and compared with the structure of group-IB and human group-X PLA2. The engineered mutants show noticeable functional differences that are rationalized in terms of spectroscopic properties and the differences detected in the crystal structure of eng-X. A major difference between the eng-mutants is in the calcium binding to the enzyme in the aqueous phase, which also influences the binding of the active site directed ligands. We suggest that the disulfide architecture of the PLA2 paralogues has a marginal influence on interface binding. In this comparison, the modest differences observed in the interfacial kinetics are attributed to the changes in the side chain residues. This in turn influences the coupling of the catalytic cycle to the calcium binding and the interfacial binding event.  相似文献   
970.
PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10(9)PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号