首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35578篇
  免费   3276篇
  国内免费   5196篇
  2024年   116篇
  2023年   505篇
  2022年   1173篇
  2021年   1881篇
  2020年   1365篇
  2019年   1743篇
  2018年   1588篇
  2017年   1230篇
  2016年   1663篇
  2015年   2417篇
  2014年   2912篇
  2013年   3009篇
  2012年   3628篇
  2011年   3290篇
  2010年   2110篇
  2009年   1876篇
  2008年   2104篇
  2007年   1891篇
  2006年   1652篇
  2005年   1351篇
  2004年   1105篇
  2003年   1037篇
  2002年   871篇
  2001年   547篇
  2000年   474篇
  1999年   435篇
  1998年   284篇
  1997年   259篇
  1996年   230篇
  1995年   183篇
  1994年   178篇
  1993年   123篇
  1992年   132篇
  1991年   104篇
  1990年   78篇
  1989年   76篇
  1988年   61篇
  1987年   40篇
  1986年   51篇
  1985年   60篇
  1984年   23篇
  1983年   29篇
  1982年   29篇
  1981年   23篇
  1980年   10篇
  1979年   20篇
  1978年   9篇
  1974年   8篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

Objectives

Caspases, a family of cysteine proteases with unique substrate specificities, contribute to apoptosis, whereas autophagy‐related genes (ATGs) regulate cytoprotective autophagy or autophagic cell death in cancer. Accumulating evidence has recently revealed underlying mechanisms of apoptosis and autophagy; however, their intricate relationships still remain to be clarified. Identification of caspase/ATG switches between apoptosis and autophagy may address this problem.

Materials and methods

Identification of caspase/ATG switches was carried out using a series of elegant systems biology & bioinformatics approaches, such as network construction, hub protein identification, microarray analyses, targeted microRNA prediction and molecular docking.

Results

We computationally constructed the global human network from several online databases and further modified it into the basic caspase/ATG network. On the basis of apoptotic or autophagic gene differential expressions, we identified three molecular switches [including androgen receptor, serine/threonine‐protein kinase PAK‐1 (PAK‐1) and mitogen‐activated protein kinase‐3 (MAPK‐3)] between certain caspases and ATGs in human breast carcinoma MCF‐7 cells. Subsequently, we identified microRNAs (miRNAs) able to target androgen receptor, PAK‐1 and MAPK‐3, respectively. Ultimately, we screened a range of small molecule compounds from DrugBank, able to target the three above‐mentioned molecular switches in breast cancer cells.

Conclusions

We have systematically identified novel caspase/ATG switches involved in miRNA regulation, and predicted targeted anti‐cancer drugs. These findings may uncover intricate relationships between apoptosis and autophagy and thus provide further new clues towards possible cancer drug discovery.
  相似文献   
992.
We report herein the synthesis of a series of 7-[3-alkoxyimino-4-(methyl)aminopiperidin-1-yl]quinolone/naphthyridone derivatives. In vitro antibacterial activity of these derivatives was evaluated against representative strains, and compared with ciprofloxacin (CPFX), levofloxacin (LVFX) and gemifloxacin (GMFX). The results reveal that all of the target compounds 19ac and 20 have considerable Gram-positive activity, although they are generally less active than the reference drugs against the Gram-negative strains with some exceptions. Especially, novel compounds 19a2, 19a4 and 19a5 were found to show strong antibacterial activity (MICs: <0.008–0.5 μg/mL) against all of the tested 15 Gram-positive strains including MRSA, LVFX- and GMFX-resistant MRSE, and CPFX-, LVFX- and GMFX-resistant MSSA.  相似文献   
993.
Hypocrellin A (HA), an a natural perylene quinine photosensitizers (PSs), can chelate with heavy metal ions, including Au(III) and Pt(IV), to form a 1:2 complex, which exhibits enhanced 1O2 generation quantum yield through the increased intersystem crossing efficiency mediated by internal heavy atom effect. Besides, the chelate process greatly improved the water solubility of HA. Comparative studies with HA and complexes have demonstrated that the heavy-atom effect on HA molecules enhances the efficiency of in vitro photodynamic (PDT) efficacy.  相似文献   
994.
Structure–activity relationships of 6-(benzoylamino)benzoxaborole analogs were investigated for the inhibition of TNF-α, IL-1β, and IL-6 from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compound 1q showed potent activity against all three cytokines with IC50 values between 0.19 and 0.50 μM, inhibited LPS-induced TNF-α and IL-6 elevation in mice and improved collagen-induced arthritis in mice. Compound 1q (AN4161) is considered to be a promising lead for novel anti-inflammatory agent with an excellent pharmacokinetic profile.  相似文献   
995.
A novel series of 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives targeting VEGFR-2, PDGFR-β and c-Kit kinases were designed and synthesized. The molecular design was based on the SAR features of indolin-2-ones as kinase inhibitors. SAR study of the series allowed us to identify compounds possessing more potent inhibitory activities against the three kinases than sunitinb with IC50 values in the low nanomolar range in vitro. Additionally, some compounds also showed favorable antiproliferative activities against a panel of cancer cell lines (BXPC-3, T24, BGC, HEPG2 and HT29).  相似文献   
996.
A novel series of CCR1 antagonists based on the 1-(4-phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanone scaffold was identified by screening a compound library utilizing CCR1-expressing human THP-1 cells. SAR studies led to the discovery of the highly potent and selective CCR1 antagonist 14 (CCR1 binding IC50 = 4 nM using [125I]-CCL3 as the chemokine ligand). Compound 14 displayed promising pharmacokinetic and toxicological profiles in preclinical species.  相似文献   
997.
We report a series of new 9-oxime ether non-ketolides, including 3-hydroxyl, 3-O-acyl and 3-O-alkyl clarithromycin derivatives, and thiophene-containing ketolides 1b–1d. Unlike previously reported ketolide 1a, none of them is comparable to telithromycin. A molecular modeling study was performed to gain insight into the binding mode of alkylides 1720 with bacterial rRNA and to rationalize the great disparity of their SAR. The 3-O-sidechains of 19 and 20 point to the so-called hydrophilic side of the macrolide ring, as seen in clarithromycin. In contrast, the 3-O-sidechains of 17 and 18 bend to the backside, the so-called hydrophobic side of the macrolide ring. The results clearly indicated the alkylides with improved antibacterial activity might possess a novel binding mode, which is different from clarithromycin and the alkylides with poor activity.  相似文献   
998.
Aminoisoquinoline and isoquinoline groups have successfully replaced the more basic P1 benzamidine group of an acylsulfonamide factor VIIa inhibitor. Inhibitory activity was optimized by the identification of additional hydrophobic and hydrophilic P′ binding interactions. The molecular details of these interactions were elucidated by X-ray crystallography and molecular modeling. We also show that decreasing the basicity of the P1 group results in improved oral bioavailability in this chemotype.  相似文献   
999.
In the present study, andrographolide (Andro, 1) derivatives were screened to identify potent inhibitors against tumor-cell migration and invasion, and associated structure–activity relationships were studied. Compared to 1, compounds 8a8d exhibited more potent activities against migration in SGC-7901, PC-3, A549, HT-29 and Ec109 cell lines. Improved activities against tumor-cell migration and invasion were proved to be associated with the down-regulation of MMPs.  相似文献   
1000.
A series of novel 5-phenyl-1H-pyrazole-3-carboxylic acid amide derivatives were designed, synthesized, and their acrosin inhibitory activities in vitro were evaluated. The results of the acrosin inhibitory activity showed that all target compounds were more potent than control TLCK. Compounds AQ-A1, AQ-D3, AQ-D4, AQ-E4 and AQ-E5 exhibited stronger acrosin inhibitory activities than control ISO-1. Especially, compound AQ-E5 displayed the most potent acrosin inhibitory activity in all the compounds, with an IC50 of 0.01 μmol/mL. This study provided a new structural class for the development of novel acrosin inhibitory agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号