首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49875篇
  免费   4712篇
  国内免费   7066篇
  2024年   140篇
  2023年   674篇
  2022年   1628篇
  2021年   2635篇
  2020年   1912篇
  2019年   2449篇
  2018年   2163篇
  2017年   1697篇
  2016年   2273篇
  2015年   3348篇
  2014年   4005篇
  2013年   4134篇
  2012年   4975篇
  2011年   4543篇
  2010年   2924篇
  2009年   2604篇
  2008年   2959篇
  2007年   2642篇
  2006年   2342篇
  2005年   1947篇
  2004年   1652篇
  2003年   1580篇
  2002年   1353篇
  2001年   832篇
  2000年   708篇
  1999年   621篇
  1998年   400篇
  1997年   361篇
  1996年   318篇
  1995年   244篇
  1994年   275篇
  1993年   175篇
  1992年   184篇
  1991年   143篇
  1990年   117篇
  1989年   109篇
  1988年   91篇
  1987年   62篇
  1986年   69篇
  1985年   89篇
  1984年   36篇
  1983年   42篇
  1982年   44篇
  1981年   26篇
  1980年   10篇
  1979年   24篇
  1978年   11篇
  1977年   9篇
  1973年   13篇
  1971年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Traumatic brain injury (TBI) triggers a complex series of neurochemical and signaling changes that lead to neuronal dysfunction and overreactive astrocytes. In the current study, we showed that interactions between SCYL1-bp1 and Pirh2 are involved in central nervous system (CNS) injury and repair. Western blot and immunohistochemical analysis of an acute traumatic brain injury model in adult rats revealed significantly increased levels of SCYL1-bp1 and Pirh2 in the ipsilateral brain cortex, compared to contralateral cerebral cortex. Immunofluorescence double-labeling analyses further revealed that SCYL1-bp1 is mainly co-expressed with NeuN. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining data supported the involvement of SCYL1-bp1 and Pirh2 in neuronal apoptosis after brain injury. We additionally examined the expression profiles of active caspase-3, which were altered in correlation with the levels of SCYL1-bp1 and Pirh2. Notably, both SCYL1-bp1 and Pirh2 were colocalized with active caspase-3, and all three proteins participated in neuronal apoptosis. Immunoprecipitation experiments further revealed interactions of these proteins with each other in the pathophysiology process. To our knowledge, this is the first study to report interactions between SCYL1-bp1 and Pirh2 in traumatic brain. Our data collectively indicate that SCYL1-bp1 and Pirh2 play important roles in CNS pathophysiology after TBI.  相似文献   
992.
993.
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.  相似文献   
994.
This work introduces a coordinate-independent method to analyse movement variability of tasks performed with hand-held tools, such as a pen or a surgical scalpel. We extend the classical uncontrolled manifold (UCM) approach by exploiting the geometry of rigid body motions, used to describe tool configurations. In particular, we analyse variability during a static pointing task with a hand-held tool, where subjects are asked to keep the tool tip in steady contact with another object. In this case the tool is redundant with respect to the task, as subjects control position/orientation of the tool, i.e. 6 degrees-of-freedom (dof), to maintain the tool tip position (3dof) steady. To test the new method, subjects performed a pointing task with and without arm support. The additional dof introduced in the unsupported condition, injecting more variability into the system, represented a resource to minimise variability in the task space via coordinated motion. The results show that all of the seven subjects channeled more variability along directions not directly affecting the task (UCM), consistent with previous literature but now shown in a coordinate-independent way. Variability in the unsupported condition was only slightly larger at the endpoint but much larger in the UCM.  相似文献   
995.
996.
The signaling of Toll-like receptors (TLRs) induces host defense against microbial invasion. Protein posttranslational modifications dynamically shape the strength and duration of the signaling pathways. It is intriguing to explore whether de-SUMOylation could modulate the TLR signaling. Here we identified SUMO-specific protease 6 (SENP6) as an intrinsic attenuator of the TLR-triggered inflammation. Depletion of SENP6 significantly potentiated the NF-κB-mediated induction of the proinflammatory genes. Consistently, SENP6-knockdown mice were more susceptible to endotoxin-induced sepsis. Mechanistically, the small ubiquitin-like modifier 2/3 (SUMO-2/3) is conjugated onto the Lysine residue 277 of NF-κB essential modifier (NEMO/IKKγ), and this impairs the deubiquitinase CYLD to bind NEMO, thus strengthening the inhibitor of κB kinase (IKK) activation. SENP6 reverses this process by catalyzing the de-SUMOylation of NEMO. Our study highlights the essential function of the SENP family in dampening TLR signaling and inflammation.  相似文献   
997.
Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naïve CD4+ T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naïve CD4+ T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection.  相似文献   
998.
999.
IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV) causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs) and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg) efficiently induces IL-23 secretion in a mannose receptor (MR)-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg) can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号