首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35599篇
  免费   3235篇
  国内免费   5256篇
  44090篇
  2024年   122篇
  2023年   505篇
  2022年   1175篇
  2021年   1888篇
  2020年   1367篇
  2019年   1744篇
  2018年   1589篇
  2017年   1230篇
  2016年   1663篇
  2015年   2418篇
  2014年   2914篇
  2013年   3012篇
  2012年   3630篇
  2011年   3292篇
  2010年   2115篇
  2009年   1878篇
  2008年   2106篇
  2007年   1890篇
  2006年   1651篇
  2005年   1352篇
  2004年   1106篇
  2003年   1037篇
  2002年   871篇
  2001年   548篇
  2000年   474篇
  1999年   435篇
  1998年   284篇
  1997年   260篇
  1996年   230篇
  1995年   183篇
  1994年   178篇
  1993年   123篇
  1992年   132篇
  1991年   104篇
  1990年   78篇
  1989年   76篇
  1988年   61篇
  1987年   40篇
  1986年   51篇
  1985年   60篇
  1984年   23篇
  1983年   29篇
  1982年   29篇
  1981年   23篇
  1980年   10篇
  1979年   20篇
  1978年   9篇
  1974年   8篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal‐derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum‐free, protein‐free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single‐cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD‐CHO? and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
72.
73.
74.
75.
76.
77.
Wavefront shaping can compensate the wavefront distortions in deep tissue focusing, leading to an improved penetration depth. However, when using the backscattered signals as the feedback, unexpected compensation bias may be introduced, resulting in focusing position deviations or even no focus in the illumination focal plane. Here we investigated the reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing by measuring the position deviations between the foci in the illumination focal plane and the epi‐detection plane. The experimental results show that when the penetration depth reaches 150 μm in mouse brain tissue (with scattering coefficient ~22.42 mm?1) using a 488 nm laser and an objective lens with 0.75 numerical aperture, the center of the real focus will deviate out of one radius range of the Airy disk while the optimized focus in the epi‐detection plane maintained basically at the center. With the penetration depth increases, the peak to background ratio of the focus in the illumination focal plane decreases faster than that in the epi‐detection plane. The results indicate that when the penetration depth reaches 150 μm, feedback based on backscattered signals will make wavefront shaping lose its reliability, which may provide a guidance for applications of non‐invasive precise optogenetics or deep tissue optical stimulation using wavefront shaping methods. A, Intensity distribution in the epi‐detection plane and the illumination focal plane before and after correction, corresponding to brain sections with 250 and 300 μm thickness, respectively. Scale bar is 2 μm. B, Averaged focusing deviations in the epi‐detection plane (optimized) and the illumination focal plane (monitored) after compensation. The unit of the ordinate is one Airy disk diameter. Black dashed line represents one Airy disk radius. Bars represent the SE of each measurement set.   相似文献   
78.
Eighteen strains of xylariaceous fungi have been screened for higher activities of cellulolytic enzymes,Trichoderma reesei QM 9414 was also examined for comparison. Strains ofXylaria anisopleura andX. regalis had higher endocellulase (CMCase) and exocellulase (Avicelase) activities after 2 weeks' incubation.Hypoxylon stygium produced the highest activity of -glucosidase 3 days after inoculation. The optimum pH for these cellulolytic enzymes was approx. 5.0 and the optimum temperatures ranged from 37 to 50°C. A mixed culture process usingT. reesei QM 9414 andH. stygium was developed to obtain enhanced synthesis of cellulase. -Glucosidase activities in the mixed culture increased within 48h whenH. stygium was introduced after 24h.  相似文献   
79.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
80.
Yang XH  Wang YH  Wang JJ  Liu YC  Deng W  Qin C  Gao JL  Zhang LY 《Peptides》2012,36(1):60-70
In this study, the relationship between the local imbalance of angiotensin converting enzymes ACE and ACE2 as well as Ang II and Ang (1-7) and renal injury was observed in the different genotypes mice subjected to tourniquet-induced ischemia-reperfusion on hind limbs. In wild-type mice, renal ACE expression increased while renal ACE2 expression decreased significantly after reperfusion, accompanied by elevated serum angiotensin II (Ang II) level and lowered serum angiotensin (1-7) (Ang (1-7)) level. However, renal Ang (1-7) also increased markedly while renal Ang II was elevated. Renal injury became evident after limb reperfusion, with increased malondialdehyde (MDA), decreased super-oxide dismutase (SOD) activity and increased serum blood urea nitrogen (BUN) and creatinine (Cr), compared to control mice. These mice also developed severe renal pathology including infiltration of inflammatory cells in the renal interstitium and degeneration of tubule epithelial cells. In ACE2 knock-out mice with ACE up-regulation, tourniquet-induced renal injury was significantly aggravated as shown by increased levels of MDA, BUN and Cr, decreased SOD activity, more severe renal pathology, and decreased survival rate, compared with tourniquet-treated wild-type mice. Conversely, ACE2 transgenic mice with normal ACE expression were more resistant to tourniquet challenge as evidenced by decreased levels of MDA, BUN and Cr, increased SOD activity, attenuated renal pathological changes and increased survival rate. Our results suggest that the deregulation of ACE and ACE2 plays an important role in tourniquet-induced renal injury and that ACE2 up-regulation to restore the proper ACE/ACE2 balance is a potential therapeutic strategy for kidney injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号