首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97028篇
  免费   7807篇
  国内免费   9377篇
  114212篇
  2024年   266篇
  2023年   1198篇
  2022年   2845篇
  2021年   4559篇
  2020年   3165篇
  2019年   4046篇
  2018年   4097篇
  2017年   3228篇
  2016年   4369篇
  2015年   5578篇
  2014年   6889篇
  2013年   7383篇
  2012年   8754篇
  2011年   8047篇
  2010年   5408篇
  2009年   4790篇
  2008年   5520篇
  2007年   4965篇
  2006年   4362篇
  2005年   3626篇
  2004年   3170篇
  2003年   2954篇
  2002年   2494篇
  2001年   1872篇
  2000年   1577篇
  1999年   1307篇
  1998年   814篇
  1997年   692篇
  1996年   624篇
  1995年   600篇
  1994年   535篇
  1993年   412篇
  1992年   508篇
  1991年   449篇
  1990年   367篇
  1989年   333篇
  1988年   240篇
  1987年   262篇
  1986年   232篇
  1985年   228篇
  1984年   147篇
  1983年   143篇
  1982年   131篇
  1981年   113篇
  1979年   101篇
  1978年   90篇
  1977年   75篇
  1976年   72篇
  1973年   80篇
  1972年   73篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
 中药固真方对一些与细胞增殖有关基因表达的影响姚明忠,顾文聪,丁卫,韩志芬,杜国光(上海中医药大学生物化学教研室,上海200032)(北京医科大学生物化学与分子生物学系,北京100083)中药固真方(VRF)具有补肾益精、延缓衰老的作用[1].能提高成...  相似文献   
122.
Electrophoretic patterns of seed storage proteins, the high-molecular-weight glutenins and gliadins, were studied in 468 plants of the common wheat cultivar Chinese Spring regenerated from callus culture of immature embryos, in 115 plants grown from seeds treated with nitrosoethylurea and in 260 control plants. From 5 to 21 single grains were analysed from each plant. In these three groups, the frequency of inherited mutations causing the loss of all proteins controlled by a locus (null-mutations, probably caused by a chromosomal deficiency) was 0.69%, 2.07%, and 0.05% per locus (the differences were statistically significant), respectively, while that of mutations causing the loss of a single protein band was 0.11%, 0.33%, and 0.05%, respectively. The loss of all of the gliadins controlled by Gli-B1 or GH-B2 (mutations were probably caused by a deletion of satellites of the corresponding chromosomes), was significantly higher than the loss of gliadins controlled by genomes A and D. Gene mutations altering the electrophoretic mobility of a single protein band in the pattern were found only in the second group of plants (0.44%). Therefore, chemical mutagenesis which produced not only more mutations than cultivation of immature wheat embryos in vitro, but also a higher ratio of mutations that altered DNA sequences, can be considered as an easier and comparatively more promising way for obtaining new improved variants of loci controlling biochemical characteristics in wheat. Somaclonal variation, on the other hand, was probably mainly caused by chromosomal abnormalities and could therefore hardly be considered as a useful tool in wheat breeding.  相似文献   
123.
The Fr gene in common bean, Phaseolus vulgaris L., is a unique gene for the study of plant nuclear-mitochondrial interactions because it appears to directly influence plant mitochondrial genome structure, resulting in the restoration of pollen fertility in cytoplasmic male sterile plants. This gene action is distinct from other pollen fertility restoration systems characterized to date. As a first step towards the map-based cloning of this unusual nuclear gene, we identified RAPD markers linked to Fr using bulked segregant analysis of near-isogenic lines. Using DNA gel blot hybridization, we localized the identified RAPD markers to a linkage group on the common bean RFLP map and constructed a linkage map of the Fr region using both RAPD markers and RFLP markers. Analysis of the mode of Fr action with the aid of identified Fr-linked DNA markers indicated that Fr functions in a semidominant fashion, showing dosage effect in controlling the dynamics of a heteroplasmic mitochondrial population. We also present our observations on the developmental distinctions, crucial in the accurate mapping of the Fr gene, between spontaneous cytoplasmic reversion and Fr-driven fertility restoration, two phenomena that are phenotypically indistinguishable.  相似文献   
124.
To examine sex and development relationships in porcine embryos in early gestation, 10 gilts were killed on Day 4, 5, or 6 post mating (first day of standing estrus = Day 0). Embryos recovered immediately after slaughter were cultured in Medium 199 with colcemid (0.05mug/ml), fixed on slides, and stained with 4% Giemsa. The number of cells in each specimen was counted from the slides, and, whenever cell dispersion allowed, sex was determined by presence or absence of the Y-chromosome in at least 2 spreads from each embryo. Three gilts slaughtered on Day 4 yielded 2- and 4-cell stage embryos (n = 38), but no data on sex could be obtained due to lack of mitosis or readable metaphase spreads. Three Day 5 litters had individual specimens ranging from 8 to 14 cells (n = 8), 32 to 64 cells (n = 10), and 13 to 31 cells (n = 11), with the sex determined in 15 of these. Cell numbers ranged from 18 to 165 (n = 14), 16 to 32 (n = 9), 36 to 82 (n = 12), and 16 to 30 (n = 9) in the 4 gilts slaughtered on Day 6, with the sex determined in 26 of these. Embryos within each litter were divided into low, medium and high cell numbers by 3 equal divisions of the range of cell numbers. Three Day-5 embryos and 1 Day-6 embryo were lost during preparation; neither the cell numbers nor the sex could be determined in 4 Day-5 and in 3 Day-6 embryos. The overall sex ratio approximated 1:1, but on Day 5, the ratios for males to females were 0:5, 1:3 and 6:0 for the low, medium and high cell number groups, respectively. Embryos of undetermined sex in these same groups numbered 3, 1 and 3, respectively. On Day 6 the distribution was 1:11, 4:2 and 8:0 in favor of the males, while embryos of undetermined sex in the low, medium and high cell number groups numbered 5, 7 and 2, respectively. Chi-square analysis of the combined Day-5 and Day-6 results indicated the presence of significantly more females among embryos with low cell numbers and more males in the high cell number group (P < 0.01).  相似文献   
125.
The aerobic microbial decomposition of trichloroacetic acid (TCA) was studied. A TCA-decomposing culture was enriched in continuous-flow and batch experiments on a medium containing TCA as the only organic component. Pure cultures of TCA degraders were isolated from the enrichment on TCA agar plates. Characterization of several isolates proved them all to be representatives of the same bacterium, a Gram-negative, catalase-positive and cytochrome C-oxidase-positive, non-motile, somewhat irregular rod. The bacterium could not be identified on the basis of its carbon-source-utilization pattern, but a partial sequencing of the 16S rDNA gene showed the isolate to belong to the gamma sub-group of Proteobacteria, and to be phylogenetically close to Acinetobacter calcoaceticus. The isolated bacterium grew exponentially with TCA as the sole source of energy and carbon. The maximum growth rate (µmax) and the growth yield on TCA (Y X/S ) were determined to be 0.027 h–1 and 0.027 g biomass/g TCA, respectively. The bacterium was not able to grow on mono- or dichloroacetic acid, but it could grow on acetate.  相似文献   
126.
The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.  相似文献   
127.
Recycling of cellulases should lower the overall cost of lignocellulosiic bioconversion processes. In this study, three recycling strategies were evaluated to determine their efficiencies over five successive rounds of hydrolysis. The effect of lignin on recycling was examined by comparing water-washed, steam-exploded birch (WB; 32% lignin) and WB which had been further extracted with alkali and peroxide (PB; 4% lignin). When the cellulases were recovered from the residual substrates after partial hydrolysis of both substrates, the recovered cellulase activity toward the mixture of fresh and residual substrates decreased after each recycling step. When the cellulases in the supernatants were also recycled, up to 20% more activity could be recovered. In both of these cases, the recovered activities did not correspond to the activities expected from the amount of cellulase protein recovered during recycling. The best recovery was obtained when the cellulases were recovered from both the residue and the supernatant after complete hydrolysis of the PB substrate. In this case, all of the originally added cellulase activity could be recovered for four consecutive hydrolysis rounds. However, when the same recycling strategy was carried out using the WB substrate, the recovered cellulase activity declined quickly with each recycling round. In all three of the recycling strategies, lower cellulase activities were recovered from the substrates with higher lignin contents. (c) 1995 John Wiley & Sons, Inc.  相似文献   
128.
129.
After the Liberation by Mao Ze Dong''s Communist army in 1949, China experienced massive social and economic change. The dramatic reductions in mortality and morbidity of the next two decades were brought about through improvements in socioeconomic conditions, an emphasis on prevention, and almost universal access to basic health care. The economic mismanagement of the Great Leap Forward brought about a temporary reversal in these positive trends. During the Cultural Revolution there was a sustained attack on the privileged position of the medical profession. Most city doctors were sent to work in the countryside, where they trained over a million barefoot doctors. Deng Xiao Ping''s radical economic reforms of the late 1970s replaced the socialist system with a market economy. Although average incomes have increased, the gap between rich and poor has widened.  相似文献   
130.
Neocentromere activity is a classic example of nonkinetochore chromosome movement. In maize, neocentromeres are induced by a gene or genes on Abnormal chromosome 10 (Ab10) which causes heterochromatic knobs to move poleward at meiotic anaphase. Here we describe experiments that test how neocentromere activity affects the function of linked centromere/kinetochores (kinetochores) and whether neocentromeres and kinetochores are mobilized on the spindle by the same mechanism. Using a newly developed system for observing meiotic chromosome congression and segregation in living maize cells, we show that neocentromeres are active from prometaphase through anaphase. During mid-anaphase, normal chromosomes move on the spindle at an average rate of 0.79 μm/min. The presence of Ab10 does not affect the rate of normal chromosome movement but propels neocentromeres poleward at rates as high as 1.4 μm/min. Kinetochore-mediated chromosome movement is only marginally affected by the activity of a linked neocentromere. Combined in situ hybridization/immunocytochemistry is used to demonstrate that unlike kinetochores, neocentromeres associate laterally with microtubules and that neocentromere movement is correlated with knob size. These data suggest that microtubule depolymerization is not required for neocentromere motility. We argue that neocentromeres are mobilized on microtubules by the activity of minus end–directed motor proteins that interact either directly or indirectly with knob DNA sequences. C urrent models suggest that chromosomes move by a combination of forces generated by microtubule disassembly (Inoue and Salmon, 1995; Waters et al., 1996) and the activity of molecular motors (Vernos and Karsenti, 1996; Yen and Schaar, 1996). Microtubule disassembly generates a constant poleward force; while molecular motors can generate force in either poleward or away-from-pole directions, depending on the characteristics of the motor protein. Both plus and minus end–directed microtubule-based motors are localized to kinetochores (Hyman and Mitchison, 1991). Immunolocalization experiments indicate that mammalian kinetochores contain the minus end– directed motor dynein throughout metaphase and anaphase (Pfarr et al., 1990; Steuer et al., 1990). The kinesin-like proteins CENP-E, which has a transient kinetochore localization in animals, and MCAK, which is localized between the kinetochore plates of mammalian chromosomes, are also thought to generate and/or regulate chromosome movement (Yen et al., 1992; Lombillo et al., 1995; Wordeman and Mitchison, 1995).In addition to the molecular motors on kinetochores, several kinesin-like proteins are localized to chromosome arms (Vernos and Karsenti, 1996). Two subfamilies of arm-based motors have been identified in animals: the NOD subfamily (Afshar et al., 1995; Tokai et al., 1996) and the Xklp1/chromokinesin subfamily (Vernos et al., 1995; Wang and Adler, 1995). Both Nod and Xklp1 are required for positioning chromosomes on the metaphase plate, suggesting that they encode plus end–directed motors (Afshar et al., 1995; Vernos et al., 1995). Other evidence suggests that minus end–directed motors interact with chromosome arms. In the plant Haemanthus, a poleward force acts along chromosome arms during metaphase (Khodjakov et al., 1996), and forces propelling chromosome arms poleward have been detected during anaphase in crane fly spermatocytes (Adames and Forer, 1996). Little is known about how poleward arm motility at metaphase–anaphase affects the fidelity or rate of chromosome segregation.The neocentromeres of maize (Rhoades and Vilkomerson, 1942) provide a particularly striking example of poleward chromosome arm motility. In the presence of Abnormal chromosome 10 (Ab10),1 heterochromatic DNA domains known as knobs are transformed into neocentromeres and mobilized on the spindle (Rhoades and Vilkomerson, 1942; Peacock et al., 1981; Dawe and Cande, 1996). Knobs are primarily composed of a tandem 180-bp repeat (Peacock et al., 1981) which shows homology to a maize B centromere clone (Alfenito and Birchler, 1993). A characteristic feature of neocentromeres is that they arrive at the spindle poles in advance of centromeres; in extreme cases the neocentromere-bearing chromosome arms stretch towards the poles (Rhoades and Vilkomerson, 1942; Rhoades, 1952). A recently identified mutation (smd1) demonstrates that a trans-acting factor(s) encoded on Ab10 is essential for converting the normally quiescent heterochromatic knobs into active neocentromeres (Dawe and Cande, 1996).Here we use neocentromeres as a model for understanding the mechanisms and importance of nonkinetochore chromosome movement. As a part of our analysis, we developed a four-dimensional system for observing chromosome segregation in living meiocytes. Our experiments were designed to determine (a) how poleward arm motility affects the rate and fidelity of chromosome segregation; and (b) whether the mechanism of neocentromere motility is comparable to the mechanism of kinetochore motility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号