首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52635篇
  免费   4557篇
  国内免费   6383篇
  2024年   121篇
  2023年   672篇
  2022年   1563篇
  2021年   2762篇
  2020年   1970篇
  2019年   2511篇
  2018年   2282篇
  2017年   1760篇
  2016年   2447篇
  2015年   3526篇
  2014年   4203篇
  2013年   4331篇
  2012年   5177篇
  2011年   4628篇
  2010年   2961篇
  2009年   2609篇
  2008年   2964篇
  2007年   2584篇
  2006年   2309篇
  2005年   1884篇
  2004年   1588篇
  2003年   1472篇
  2002年   1250篇
  2001年   905篇
  2000年   802篇
  1999年   736篇
  1998年   471篇
  1997年   442篇
  1996年   396篇
  1995年   332篇
  1994年   285篇
  1993年   227篇
  1992年   262篇
  1991年   212篇
  1990年   174篇
  1989年   133篇
  1988年   107篇
  1987年   89篇
  1986年   76篇
  1985年   86篇
  1984年   38篇
  1983年   48篇
  1982年   33篇
  1981年   23篇
  1980年   14篇
  1979年   21篇
  1978年   10篇
  1974年   9篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
911.
Potassium (K+) influx into pollen tubes via K+ transporters is essential for pollen tube growth; however, the mechanism by which K+ transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca2+-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca2+-dependent regulation of the inward K+ (K+in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K+in currents of pollen tube protoplasts were inhibited by elevated [Ca2+]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca2+-dependent inhibition of K+in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K+in channel is the main contributor to pollen tube K+in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca2+-dependent inhibition of K+in channels and participate in the regulation of pollen tube growth in Arabidopsis.  相似文献   
912.
913.
The purpose of this study was to determine mitochondrial changes in fast muscles from interleukin-15 receptor alpha knockout (IL-15RαKO) mice. We tested the hypothesis that fast muscles from IL-15RαKO mice would have a greater mitochondrial density and altered internal structure compared to muscles from control mice. In fast muscles from IL-15RαKO mice, mitochondrial density was 48% greater with a corresponding increase in mitochondrial DNA content. Although there were no differences in the relative size of isolated mitochondria, internal complexity was lower in mitochondria from IL-15RαKO mice. These data support an increase in mitochondrial biogenesis and provide direct evidence for a greater density and altered internal structure of mitochondria in EDL muscles deficient in IL-15Rα.  相似文献   
914.
915.
916.
We investigated the performance of small-caliber polyurethane (PU) small-diameter vascular prosthesis generated using the electrospinning technique. PU was electrospun into small-diameter, small-caliber tubular scaffolds for potential application as vascular grafts. We investigated the effects of electrospinning conditions (solution concentration, mandrel rotation speed) on the microstructure and porosity of the scaffolds for the purpose of preparing scaffolds with optimum microstructures and properties. We evaluated the mechanical properties of the scaffolds by tensile tests and the cytotoxicity of the PU small-diameter, small-caliber PU synthetic vascular graft by the MTT assay. The adhesion of endothelial cells to the PU scaffold was characterized by Hoechst staining and fluorescence microscopy, and we measured endothelial cell proliferation on the PU scaffold by the CCK-8 assay. We analyzed the prosthesis microstructure and endothelial cell morphology using scanning electron microscopy. With increasing PU concentration in the electrospinning solution, the fiber diameter of the vascular graft increased and the porosity decreased. In addition, with increasing electrospinning time, the wall thickness increased and the porosity decreased. We found that regular fiber orientation can be obtained by adjusting the rotation speed of the mandrel. Cell proliferation was not inhibited as the small-caliber PU synthetic vascular grafts showed little cytotoxicity. The endothelial cells had faster adherence to the PU scaffolds than to the PTFE surface during the initial contact. After prolonged cell culture, significantly higher endothelial cell proliferation rate was observed in the PU scaffold groups than the PTFE group. We obtained small-caliber PU vascular grafts with optimal fiber arrangement, excellent mechanical properties, and optimal biocompatibility by optimizing the electrospinning conditions. This study provides in vitro biocompatibility data that is helpful for the clinical application of the PU small-diameter, small-caliber PU vascular grafts.  相似文献   
917.
We sought to study the corrosion behavior and surface properties of a commercial cobalt–chromium (Co–Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.  相似文献   
918.
We sought to investigate whether TSG suppressed the ICAM-1/VCAM-1 expression in dietary atherosclerotic rats and in Ox-LDL-induced U937 cells. For this purpose, 60 male Sprague–Dawley rats were randomly-and-equally divided into six groups. Atherosclerosis was induced by feeding rats a hyperlipidemic diet. TSG (120, 60 or 30 mg/kg/day) was administered by oral gavage. Simvastatin (2 mg/kg/day) was administered as positive control whereas physiological saline (0.9 % NaCl) served as untreated control. After 12 weeks, rats were euthanized by ethyl carbonate (1,200 mg/kg) and aortic wall samples were collected. Besides, U937 cells were stimulated for 48 h by Ox-LDL (80 μg/mL) with and without TSG (120, 60, 30 μg/L) or simvastatin (100 μg/L). ICAM-1/VCAM-1 mRNA expression was determined by RT-PCR and protein expression was detected by immunohistochemistry and/or western blotting. The data show that ICAM-1/VCAM-1 mRNA/protein expression was significantly enhanced in atherosclerotic aortas compared with normal diet group. Ox-LDL-induced ICAM-1/VCAM-1 mRNA/protein expression in U937 cells. Importantly, TSG significantly inhibited ICAM-1/VCAM-1 expression in atherosclerotic aortas in a dose-dependent manner. TSG-pretreatment also inhibited ICAM-1/VCAM-1 expression in Ox-LDL-induced U937 cells. Therefore, we concluded that TSG suppressed the expression of adhesion (ICAM-1/VCAM-1) molecules both in vivo (in aortic wall of dietary atherosclerotic rats) and in vitro (U937 cells).  相似文献   
919.
Hemophilia A is an x-linked recessive inherited bleeding disorder. So far, more than 1,885 disease-causing mutations of factor VIII gene have been identified. Clinic confers a great challenge for the molecular diagnosis. We aim to make a better strategy for the molecular diagnosis in Hemophilia A. First, factor VIII intron 22 inversion and intron 1 inversion mutations were detected using Inversion-PCR and double-tube multiple PCRs. And then, non-inversion mutations were analyzed by denaturing high performance liquid chromatography and/or direct sequencing. Novel mutations were further analyzed the conservation and 3D structures by a B domain deleted crystallographic model and bioinformatics. Finally, we can indirectly confirm the diagnosis by linkage analysis for the patients with the confusing diagnosis by the techniques mentioned above. Eleven patients with the factor VIII Inv 22 were found, and the remaining 16 patients were found with 11 different mutations, of which 3 was novel mutations affecting A1, B domains and splicing site. Moreover, the prenatal diagnosis was performed on 14 fetuses. Ten fetuses were successfully confirmed to be normal, 1 fetus to be a heterozygote with factor VIII c.3275–3276 ins A and 3 fetuses to be hemizygotes with factor VIII Inv 22 mutation.  相似文献   
920.
The crustacean X-organ–sinus gland (XO–SG) complex controls molt-inhibiting hormone (MIH) production, although extra expression sites for MIH have been postulated. Therefore, to explore the expression of MIH and distinguish between the crustacean hyperglycemic hormone (CHH) superfamily, and MIH immunoreactive sites (ir) in the central nervous system (CNS), we cloned a CHH gene sequence for the crab Portunus pelagicus (Ppel-CHH), and compared it with crab CHH-type I and II peptides. Employing multiple sequence alignments and phylogenic analysis, the mature Ppel-CHH peptide exhibited residues common to both CHH-type I and II peptides, and a high degree of identity to the type-I group, but little homology between Ppel-CHH and Ppel-MIH (a type II peptide). This sequence identification then allowed for the use of MIH antisera to further confirm the identity and existence of a MIH-ir 9 kDa protein in all neural organs tested by Western blotting, and through immunohistochemistry, MIH-ir in the XO, optic nerve, neuronal cluster 17 of the supraesophageal ganglion, the ventral nerve cord, and cell cluster 22 of the thoracic ganglion. The presence of MIH protein within such a diversity of sites in the CNS, and external to the XO–SG, raises new questions concerning the established mode of MIH action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号