首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   1篇
  127篇
  2022年   2篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   13篇
  2011年   10篇
  2010年   2篇
  2008年   8篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
121.
Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C6. Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.  相似文献   
122.
123.
Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew, one of the most devastating diseases of cultivated hop, Humulus lupulus. Downy mildew occurs in all production areas of the crop in the Northern Hemisphere and Argentina. The pathogen overwinters in hop crowns and roots, and causes considerable crop loss. Downy mildew is managed by sanitation practices, planting of resistant cultivars, and fungicide applications. However, the scarcity of sources of host resistance and fungicide resistance in pathogen populations complicates disease management. This review summarizes the current knowledge on the symptoms of the disease, life cycle, virulence factors, and management of hop downy mildew, including various forecasting systems available in the world. Additionally, recent developments in genomics and effector discovery, and the future prospects of using such resources in successful disease management are also discussed.TaxonomyClass: Oomycota; Order: Peronosporales; Family: Peronosporaceae; Genus: Pseudoperonospora; Species: Pseudoperonospora humuli.Disease symptomsThe disease is characterized by systemically infected chlorotic shoots called “spikes". Leaf symptoms and signs include angular chlorotic lesions and profuse sporulation on the abaxial side of the leaf. Under severe disease pressure, dark brown discolouration or lesions are observed on cones. Infected crowns have brown to black streaks when cut open. Cultivars highly susceptible to crown rot may die at this phase of the disease cycle without producing shoots. However, foliar symptoms may not be present on plants with systemically infected root systems.Infection processPathogen mycelium overwinters in buds and crowns, and emerges on infected shoots in spring. Profuse sporulation occurs on infected tissues and sporangia are released and dispersed by air currents. Under favourable conditions, sporangia germinate and produce biflagellate zoospores that infect healthy tissue, thus perpetuating the infection cycle. Though oospores are produced in infected tissues, their role in the infection cycle is not defined.ControlDowny mildew on hop is managed by a combination of sanitation practices and timely fungicide applications. Forecasting systems are used to time fungicide applications for successful management of the disease.Useful Websites https://content.ces.ncsu.edu/hop‐downy‐mildew (North Carolina State University disease factsheet), https://www.canr.msu.edu/resources/michigan‐hop‐management‐guide (Michigan Hop Management Guide), http://uspest.org/risk/models (Oregon State University Integrated Plant Protection Center degree‐day model for hop downy mildew), https://www.usahops.org/cabinet/data/Field‐Guide.pdf (Field Guide for Integrated Pest Management in Hops).  相似文献   
124.
The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.  相似文献   
125.
The affinity of phosvitin with serine hydroxymethyl transferase (SHMT), an acidic multi-subunit protein, was evaluated by measurements of enzyme activity, sedimentation velocity, steady-state fluorescence, circular dichroism and kinetic thermal stability. While the presence of phosvitin had no effect on the SHMT activity, the sedimentation coefficient of SHMT increased from 8.7 S to 12.5 S suggesting the formation of a complex at a SHMT:phosvitin molar ratio of 2:1. Based on steady-state fluorescence quenching measurements an association constant of 2.4 +/- 0.2 x 10(5) M-1 at 25 degrees C was obtained for the interaction of phosvitin with SHMT. The temperature dependency of the association constant in the range 15-35 degrees C suggests the involvement of ionic forces in the interaction. The thermal inactivation of SHMT followed first order kinetics. In the presence of phosvitin the rate constant decreased and half time increased. The circular dichroism measurements suggest that phosvitin interaction does not involve pyridoxal phosphate binding domain of the enzyme. Although minor changes in the secondary structure of the enzyme were observed, the environment around aromatic amino acids did not change significantly.  相似文献   
126.
127.
A naturally occurring inhibitor of serine hydroxymethyltransferase (EC 2.1.2.1) in mung bean seedlings extracts was purified by ammonium sulphate precipitation, phenyl-Sepharose chromatography followed by heating to release the inhibitor bound to the protein. The inhibitor had an absorption maximum at 200 nm, was not precipitated by trichloroacetic acid, was dialysable and resistant to inactivation by heating at 98 degrees C for 4 hr, protease and ribonuclease digestion; but was acid labile. The chromatographically pure preparation inhibited both mung bean and sheep liver SHMT. Qualitative and quantitative analyses indicated that it contained a carbohydrate moiety, an O-amino and vicinal diol groups. Paper electrophoresis at pH 4.3 suggested that the inhibitor was positively charged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号