首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2164篇
  免费   281篇
  国内免费   1篇
  2446篇
  2022年   19篇
  2021年   31篇
  2020年   16篇
  2019年   21篇
  2017年   29篇
  2016年   25篇
  2015年   78篇
  2014年   87篇
  2013年   97篇
  2012年   166篇
  2011年   121篇
  2010年   69篇
  2009年   66篇
  2008年   80篇
  2007年   81篇
  2006年   74篇
  2005年   60篇
  2004年   63篇
  2003年   54篇
  2002年   57篇
  2001年   48篇
  2000年   54篇
  1999年   47篇
  1998年   42篇
  1997年   35篇
  1996年   23篇
  1995年   21篇
  1994年   22篇
  1993年   26篇
  1992年   40篇
  1991年   43篇
  1990年   41篇
  1989年   32篇
  1988年   41篇
  1987年   29篇
  1986年   36篇
  1985年   27篇
  1984年   30篇
  1983年   26篇
  1982年   28篇
  1981年   17篇
  1980年   23篇
  1979年   23篇
  1978年   28篇
  1977年   22篇
  1975年   16篇
  1974年   19篇
  1973年   24篇
  1972年   21篇
  1969年   21篇
排序方式: 共有2446条查询结果,搜索用时 15 毫秒
131.
132.
Electron microscopy, in conjunction with X-ray microanalysis, was used to investigate the effects of exposure to cadmium on the elemental composition of the macroalgaUlva lactuca. The cell wall was the only region of the cell to show any marked change in chemical composition as a result of exposure to cadmium, with less calcium evident in cadmium-treated thallus compared with untreated thalli. The cell wall ofU. lactuca is a complex structure made up of polysaccharides consisting of many-branched chains composed mostly of rhamnose and galactose subunits. Some of the hydroxyl groups on the subunits are substituted by sulphate groups. Borate is associated with the rhamnose subunits, which contain no sulphate groups, and calcium binds to borate, cross-linking the rhamnose groups. The borate-calcium complex adds rigidity to the cell wall; the replacement of calcium by cadmium will, therefore, influence the rigidity of the thallus. The ecological significance of this work is discussed with respect to the ability of the alga to withstand grazing or emersion.  相似文献   
133.
Eight species of Lycidae are newly recorded from New Brunswick, Canada, bringing the total number of species known from the province to 16. The first documented records from New Brunswick are provided for Greenarius thoracicus (Randall) Erotides scuptilis (Say), and Calopteron terminale (Say) reported by Majka et al. (2011). Eropterus arculus Green, Lopheros crenatus (Germar), and Calochromus perfacetus (Say) are reported for the first time in the Maritime provinces. Collection data, habitat data, and distribution maps are presented for all these species.  相似文献   
134.
Cyclic AMP and cell swelling stimulate hepatic Na+/TC cotransport and Ntcp translocation via the phosphoinositide 3-kinase signaling pathway. To determine the downstream target of the phosphoinositide 3-kinase action, we examined the role of protein kinase B (PKB)/Akt using SB203580 in hepatocytes as well as by transfection with a dominant negative (DN-PKB) or a constitutively active (CA-PKB) form of PKB in HuH-Ntcp cells. Both cAMP and cell swelling stimulated p38 mitogen-activated protein (MAP) kinase as well as PKB activity. Although 100 microm SB203580 inhibited cell swelling- and 8-chlorophenylthio-cAMP-induced activation of both p38 MAP kinase and PKB, 1 microm SB203580 inhibited activation of p38 MAP kinase, but not of PKB, in hepatocytes. 100 microm, but not 1 microm SB203580, inhibited cell swelling- and cAMP-induced increases in taurocholate (TC) uptake and Ntcp translocation in hepatocytes. TC uptake in HuH-Ntcp cells was more than 90% dependent on extracellular Na+. Cyclic AMP and cell swelling increased TC uptake by 50-100% and PKB activity 2-4-fold in HuH-Ntcp cells transfected with the empty vector and failed to increase PKB activity, TC uptake, and Ntcp translocation in DN-PKB-transfected HuH-Ntcp cells. Transfection with CA-PKB increased PKB activity, TC uptake, and Ntcp translocation in HuH-Ntcp cells compared with cells transfected with the empty vector. In contrast, transfection with DN-PKB did not affect basal PKB activity, TC uptake, or Ntcp translocation. Taken together, these results strongly suggest that cell swelling and cAMP-mediated stimulation of hepatic Na+/TC cotransport and Ntcp translocation requires activation of PKB and is mediated at least in part via a phosphoinositide 3-kinase/PKB-signaling pathway.  相似文献   
135.
Upon the 20th Anniversary of the Society for Melanoma Research, we highlight the perspectives of patients aiming to help improve future experiences, outcomes, and their quality of life over the next 20 years. Five melanoma patients generously shared their inspiring and enlightening stories of diagnosis, treatment, and outcomes. Many patients had excellent medical teams that synergistically worked together to provide an accurate diagnosis, effective treatment options, and supportive care. However, it is clear that health inequities persist in communities where people of color are predominant, affecting early detection, patient experience, and outcomes. These stories shed light on the unique challenges faced by patients and how the lack of melanoma awareness and adequate resources, especially in communities of color or low socioeconomic status, can contribute to disparate outcomes in melanoma care. We expect that these stories will raise awareness about the progress in melanoma treatment but also the existent disparities in melanoma diagnosis and treatment and the importance of early detection and prevention.  相似文献   
136.
Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy   总被引:22,自引:0,他引:22  
C Webster  L Silberstein  A P Hays  H M Blau 《Cell》1988,52(4):503-513
We show that Duchenne muscular dystrophy (DMD) selectively affects a subset of skeletal muscle fibers specialized for fast contraction. Muscle fiber types were characterized immunohistochemically with monoclonal antibodies that distinguish isoforms of fetal and adult-fast or adult-slow myosin heavy chain present in the same fiber. Fetal myosin expression increased with patient age and was not due to arrested development but rather to de novo synthesis, which served as a sensitive indicator of muscle regeneration. A subset of fast fibers were the first to degenerate (type IIb). Extensive fast fiber regeneration occurred before slow fibers were affected. These results suggest that the DMD gene product has a specific function in a subpopulation of muscle fibers specialized to respond to the highest frequency of neuronal stimulation with maximal rates of contraction.  相似文献   
137.
138.
In the flatworm genus Schistosoma, species of which include parasites of biomedical and veterinary importance, mitochondrial gene order is radically different in some species. A PCR-based survey of 19 schistosomatid spp. established which of 14 Schistosoma spp. have the ancestral (plesiomorphic) or derived gene order condition. A phylogeny for Schistosoma was estimated and used to infer the origin of the gene order change which is present in all members of a clade containing Schistosoma incognitum and members of the traditionally recognised Schistosoma indicum, Schistosoma mansoni and Schistosoma haematobium spp. groups. Schistosoma turkestanicum, with the plesiomorphic gene order state, is sister to this clade. Common interval analysis suggests change in gene order, from ancestral to derived, consisted of two sequential transposition events: (a) nad1_nad3 to nad3_nad1 and (b) [atp6,nad2]_[nad3,nad1,cox1,rrnL,rrnS,cox2,nad6] to [nad3,nad1,cox1,rrnL,rrnS,cox2,nad6]_[atp6,nad2], where gene order of fragments within square brackets remain unchanged. Gene order change is rare in parasitic flatworms and is a robust synapomorphy for schistosome spp. that exhibit it. The schistosomatid phylogeny casts some doubt on the origin of Schistosoma (Asian or African), highlights the propensity for species to host switch amongst mammalian (definitive) hosts, and indicates the likely importance of snail (intermediate) hosts in determining and defining patterns of schistosome radiation and continental invasion. Mitogenomic sampling of Schistosoma dattai and Schistosoma harinasutai to determine gene order, and within key species, especially S. turkestanicum and S. incognitum, to determine ancestral ranges, may help discover the geographic origins of gene order change in the genus. Samples of S. incognitum from India and Thailand suggest this taxon may include cryptic species.  相似文献   
139.
Microbial ecosystems in compost and granular activated carbon biofilters   总被引:2,自引:0,他引:2  
Compost and granular activated carbon biofilters operated at a wastewater treatment plant simultaneously removed low concentrations of hydrogen sulfide and volatile organic compounds. Through the use of phospholipid fatty acid analyses, the effects of declining pH caused by sulfide oxidation were established for microbial growth, microorganism stress, and microbial community structure. Microorganisms on both media demonstrated increases in microbial densities, varying degrees of environmental stress, and domination by gram-negative bacteria. However, the declining pH had little effect on compound removal, which was greater than 99% for the hydrogen sulfide and greater than 70% for the oxygenated and aromatic hydrocarbons. The microbial communities adjusted to difficult environmental conditions through acclimation of the species present or by growth of low-pH-tolerant species. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 296-303, 1997.  相似文献   
140.
To elucidate the role of sparrows as intermediate hosts of highly pathogenic avian influenza H5N1 viruses, we assessed shedding and interspecies waterborne transmission of A/duck/Laos/25/06 in sparrows and chickens. Inoculated birds shed virus at high titers from the oropharynx and cloaca, and infection was fatal. Waterborne transmission from inoculated sparrows to contact chickens was absent, while 25% of sparrows were infected via waterborne transmission from chickens. The viral shedding and susceptibility to infection we observed in sparrows, coupled with their presence in poultry houses, could facilitate virus spread among poultry and wild birds in the face of an H5N1 influenza virus outbreak.The H5N1 influenza A viruses remain a major global concern because of their rapid evolution, genetic diversity, broad host range, and ongoing circulation in wild and domestic birds. H5N1 influenza viruses have swept through poultry flocks across Asia and have spread westward through Eastern Europe to India and Africa since 2003 (1). Sixty-two countries have reported H5N1 influenza virus in domestic poultry/wild birds during the time period 2003 to 2009 (http://www.oie.int/eng/info_ev/en_AI_factoids_2.htm), and to date, more than 400 human infections have been documented in 16 countries, with a mortality rate of ∼61% (http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_05_22/en/index.html). Most human cases of H5N1 influenza have occurred after contact with infected poultry (13).Some of the more recent isolates of H5N1 highly pathogenic avian influenza (HPAI) virus do not cause overt disease in certain species of domestic and wild ducks; however, these viruses are 100% lethal to chickens and gallinaceous poultry. Because of ducks’ ability to “silently” spread H5N1 HPAI virus and their unresolved role as a reservoir, they are the focus of much research (5, 6, 11). In contrast, the possible role of passerine birds has received little attention, despite their widespread interaction with poultry at many sites worldwide (http://www.searo.who.int/LinkFiles/Publication_PHI-prevention-control-AI.pdf). The order Passeriformes includes more than half of all bird species, including sparrows. Since 2001, several outbreaks of H5N1 influenza virus infection have been reported in passerine birds in eastern Asia, often near infected poultry farms (15). Interestingly, the only confirmed presence of asymptomatic infection with HPAI H5N1 in wild birds was in tree sparrows in Henan Province, China. Both tree and house sparrows (Passer montanus and Passer domesticus, respectively) are members of the Old World sparrow family Passeridae, and in fact, the tree sparrow was not recognized as a species separate from that of the house sparrow until 1713 (http://www.arkive.org/tree-sparrow/passer-montanus/info.html?displayMode=factsheet). The four avian influenza virus isolates obtained from these asymptomatic infections were of the A/Goose/Guangdong/1/96 lineage and were highly pathogenic to experimentally infected chickens (4, 8).Under experimental conditions, passerine species have shown varied susceptibility to HPAI H5N1 viruses. Among sparrows, starlings, and pigeons inoculated with HPAI H5N1 virus isolates, only sparrows experienced lethal infection, and transmission to contact birds was extremely rare (2). Similarly, in sparrows and starlings inoculated with the H5N1 HPAI A/chicken/Hong Kong/220/97 virus, clinical signs were observed only in sparrows, and no deaths occurred (9).To assess the duration and routes of virus shedding and the waterborne virus transmission of HPAI H5N1 virus between sparrows and chickens, we inoculated groups of birds with A/duck/Laos/25/06, which had caused extremely high morbidity and mortality in domestic ducks (7) and was highly pathogenic to chickens, geese, and quail (J.-K. Kim and R. G. Webster, unpublished data). The virus was obtained from our collaborators in Lao People''s Democratic Republic and was grown in the allantoic cavities of 10-day-old embryonated chicken eggs (eggs) for 36 to 48 h at 35°C. The allantoic fluid was harvested, titrated (50% egg infective dose [EID50] per milliliter), and stored at −80°C. All experiments were approved by the U.S. Department of Agriculture and the U.S. Centers for Disease Control and Prevention and were performed in biosafety level 3+ facilities at St. Jude Children''s Research Hospital. Wild house sparrows (Passer domesticus) were captured locally (Memphis, TN), and specific-pathogen-free outbred White Leghorn chickens (Gallus domesticus) were purchased from Charles River Laboratories (North Franklin, CT). All animal experiments were approved by the St. Jude Animal Care and Use Committee and complied with the policies of the National Institutes of Health and the Animal Welfare Act.Before inoculation, oropharyngeal and cloacal swabs were collected from sparrows, and baseline blood samples were collected from chickens to exclude preexisting H5N1 influenza virus infection. Eight sparrows were inoculated intranasally with 106 EID50 of virus in a volume of 100 μl, and five chickens were inoculated with 102 EID50 of virus in a volume of 1 ml (0.5 ml intranasally, 0.5 ml intratracheally, and 1 drop per eye). All birds in each experimental group were housed in a single cage. Inoculated sparrows were provided with 1 liter of water in a shallow stainless steel pan at the bottom of the cage, and chickens were given 3 liters of water in a trough inside the cage. Twenty-four hours after inoculation, 1 liter of water was removed from the inoculated chickens’ cage and placed undiluted in a cage housing 8 contact sparrows; similarly, 1 liter of water was taken from the inoculated sparrows’ cage, mixed with 2 liters of fresh water, and placed in a cage housing 5 contact chickens. Clinical disease signs, including depression, huddling at the cage bottom, and ruffled feathers, were monitored through daily observation, and oropharyngeal and cloacal swabs obtained from all birds were collected daily for 14 days. Swab samples were titrated in eggs and expressed as log10 EID50/ml (10). The lower limit of detection was 0.75 log10 EID50/ml.Blood samples were taken from all surviving contact birds on day 14 of the study. Sera were treated with a receptor-destroying enzyme (Denka Seiken, Campbell, CA), as instructed by the manufacturer, and heat inactivated at 56°C for 30 min. Hemagglutination inhibition (HI; using 0.5% packed chicken red blood cells) titers were determined as the reciprocal of the highest serum dilution that inhibited 4 hemagglutinating units of virus. HI titers of ≥10 were considered suggestive of recent influenza virus infection.Inoculation with A/duck/Laos/25/06 was lethal to all birds (Table (Table1).1). While chickens succumbed to infection within 2 days postinoculation (p.i.), the mean time until death for sparrows was 4.1 days; mortality occurred rapidly (overnight) without prior observation of clinical signs. Expected clinical signs, should they have occurred, included moderate to severe depression, huddling at the cage bottom, and ruffled feathers (9). All inoculated birds shed virus from the oropharynx and, to a lesser extent, from the cloaca (Fig. 1A and B). The mean virus titers of inoculated chickens and sparrows were comparable on day 1 p.i.; however, on day 2 p.i., the mean oropharyngeal and cloacal viral titers of chickens were approximately 2 and 2.5 times greater, respectively, than those of sparrows (Fig. 1A and B). The virus titer in water used by inoculated sparrows was 100.75 EID50/ml at 1 day p.i. and peaked at 101.75 EID50/ml on days 2 and 4 p.i. (Fig. (Fig.1C).1C). No virus was detected in water from the inoculated chickens’ cage.Open in a separate windowFIG. 1.Mean oropharyngeal and cloacal virus titers in sparrows (A) and chickens (B) inoculated with a lethal dose of A/duck/Laos/25/06 (H5N1) virus. (C) Virus titers in the drinking water of inoculated sparrows. Sparrows were inoculated with 106 EID50/ml of virus, and chickens were inoculated with 102 EID50/ml of virus. The lower limit of detection was 0.75 log10 EID50/ml.

TABLE 1.

Transmission rates, mortality rates, and mean peak titers of A/duck/Laos/25/06 (H5N1) virus in inoculated and contact birds
GroupType of bird (no.)Infection routeTransmission rate (%)Mortality rate (%)Mean peak virus titer (log10 EID50/ml)a
OropharyngealCloacal
1Chickens (5)Inoculation1001006.455.95
Sparrows (8)Contactb25253.884.25
2Sparrows (8)Inoculation1001004.564.03
Chickens (5)Contactc00NANA
Open in a separate windowaSwab samples were taken daily after virus inoculation and after introduction of infective water to contacts. NA, not applicable.bContact sparrows were given 1 liter of water containing 1 ml resuspended fecal material (106.5 EID50/ml) obtained from infected chickens on day 2 p.i.cContact chickens were given 3 liters of a 1:3 dilution of water from the trough used by inoculated sparrows.Virus was not isolated from the swab samples obtained from contact chickens, suggesting the absence of waterborne virus transmission from sparrows (Table (Table1).1). Further, HI testing of the contact chickens detected no virus-specific antibodies (data not shown). Because virus was not detected in the water from the inoculated chickens’ cage, we generated a contaminated water source for the contact sparrows by creating a suspension of fecal material in phosphate-buffered saline (PBS; 106.5 EID50/ml), using swabs obtained from all five infected chickens at 2 days p.i.; we added 1 ml of this mixture to 1 liter of fresh water for a final concentration of 103.5 EID50/ml. Waterborne virus was transmitted to 2 of 8 contact sparrows, whose deaths occurred at 5 days and 10 days postcontact, respectively.Our results showed that sparrows were susceptible to the A/duck/Laos/25/06 (H5N1) virus at a wide range of doses, as demonstrated by the 100% mortality of both inoculated sparrows (106 EID50 of virus intranasally) and infected contact sparrows (water contained 103.5 EID50/ml of virus). The 100% lethality of the virus to sparrows supports the report of Boon et al. (2) stating that more recent (2005-2006) H5N1 isolates appear to be more pathogenic to passerine birds than earlier isolates, such as A/chicken/Hong Kong/220/97 (H5N1).While the duration and route of virus shedding clearly varied between infected sparrows and chickens, results also suggested that transmission rates may be different between the two species, as transmission occurred only from chickens to sparrows via artificially contaminated water (and not vice versa). Virus transmission from sparrows to chickens may require direct contact and/or aerosol transmission rather than ingestion of waterborne virus, seeing as water titers were as high as 101.25 EID50/ml (on days 1 and 3 postcontact) after dilution with fresh water, and this dose was 100% lethal to experimentally infected ducks (7). Additionally, in our experiment, A/duck/Laos/25/06 was rapidly lethal to naturally infected chickens at a dose of 102 EID50/ml. Alternatively, transmission from infected sparrows to chickens may require a higher virus titer in the water. Future studies are indicated to determine the concentration of contaminated sparrow water necessary to infect chickens with A/duck/Laos/25/06 and to determine transmissibility of HPAI H5N1 virus from infected chickens to contact sparrows via naturally contaminated water.The undetectable level of virus in the water trough of inoculated chickens, all of which shed high levels of virus from the oropharynx and cloaca, may reflect rapid disease progression that caused the chickens to stop drinking water by day 1 p.i. and succumb to infection on day 2 p.i. These results may indicate that sparrows are unlikely to be infected under normal circumstances during an H5N1 virus outbreak. Our findings could also be attributed to the extremely high lethality of A/duck/Laos/25/06 to chickens and the reduced period of time for shedding, compared to those of other recent HPAI H5N1 virus isolates where mortality occurred as late as day 5 p.i. in experimentally infected chickens (12, 14). In contrast, the sparrows shed virus for several days, and their drinking water was rapidly contaminated with virus. The long-term shedding we observed in sparrows was also seen by Brown et al. in house sparrows infected with A/whooper swan/Mongolia/244/05 (H5N1) HPAI virus (3). These findings, in view of the widespread intermingling of land-based wild birds with wild and domestic waterfowl and poultry (2, 3), suggest that passerine birds can facilitate the spread of H5N1 virus.Throughout the United States, sparrows and starlings are commonly found in low-biosecurity poultry housing, where they often eat and drink from the feed and water troughs. We used a shallow stainless steel basin in our sparrow enclosures to simulate these poultry watering troughs, which allow flocks of wild birds, such as sparrows, to bathe, defecate, and drink. Although we did not observe sparrows bathing in the water basin during the study, seed and fecal droppings were present in the water, indicating that the sparrows were either perching on the water basin or standing in the water. In the face of an H5N1 outbreak, these birds could spread virus within or among poultry facilities and the wild bird population by contaminating food and/or water with feces and/or oropharyngeal secretions. Our findings on the shedding of HPAI H5N1 virus in infected sparrows, when taken together with the ethological knowledge of these birds, suggest that the behavior of infected sparrows may be a critical determinant of their ability to act as an intermediate host for influenza. Understanding the importance of influenza infection in nonwaterfowl and nonpoultry species is therefore an area that necessitates further research.To our awareness, this is the first experimental study to illustrate interspecies transmission of H5N1 virus between poultry and wild birds. The transmission of waterborne virus to 25% of sparrows provides further evidence that they can serve as intermediate hosts of H5N1 viruses. Although we did not observe waterborne virus transmission from sparrow to chicken, further studies are needed to investigate the transmission of other H5N1 virus strains and to examine the role of direct contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号