首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2222篇
  免费   278篇
  国内免费   1篇
  2501篇
  2022年   20篇
  2021年   31篇
  2020年   16篇
  2019年   21篇
  2017年   31篇
  2016年   25篇
  2015年   87篇
  2014年   90篇
  2013年   99篇
  2012年   170篇
  2011年   124篇
  2010年   80篇
  2009年   69篇
  2008年   87篇
  2007年   84篇
  2006年   79篇
  2005年   62篇
  2004年   67篇
  2003年   56篇
  2002年   57篇
  2001年   49篇
  2000年   55篇
  1999年   47篇
  1998年   46篇
  1997年   35篇
  1996年   23篇
  1995年   21篇
  1994年   23篇
  1993年   26篇
  1992年   40篇
  1991年   39篇
  1990年   39篇
  1989年   31篇
  1988年   38篇
  1987年   29篇
  1986年   33篇
  1985年   27篇
  1984年   29篇
  1983年   26篇
  1982年   28篇
  1981年   17篇
  1980年   23篇
  1979年   23篇
  1978年   28篇
  1977年   21篇
  1975年   17篇
  1974年   19篇
  1973年   24篇
  1972年   21篇
  1969年   21篇
排序方式: 共有2501条查询结果,搜索用时 15 毫秒
991.
Based on recent studies showing that PLCgamma associates to insulin receptor, we investigated its role in insulin stimulation of glucose transport in brown adipocytes. Insulin stimulation induced rapid PLCgamma association to phosphorylated insulin receptor, and activation of PLCgamma, as assessed by the mobilization of Ca(2+) from intracellular stores and by the production of the second messenger DAG. Both events are dependent on activation of PI3-kinase. Inhibition of PLCgamma activity either with the chemical compound U73122 or with an inhibitor peptide precluded insulin stimulation of glucose uptake, GLUT4 translocation, and actin reorganization, as wortmannin did. In contrast, the inactive analog U73343 did not have an inhibitory effect. Furthermore, translocation of GLUT4-GFP in response to insulin was completely abolished by cotransfection with a PLCgamma-inactive mutant in HeLa cells, a cell model sensitive to insulin that express PLCgamma. U73122 did not affect PI3-kinase nor Akt activation, but impaired PKCzeta activation by insulin, as wortmannin did. PLC activity renders two products, IP(3) and DAG, and DAG can be metabolized to PA by the action of DAG-kinase. Using the compound R54494, a DAG-kinase inhibitor, insulin-induced PKCzeta activation was also suppressed, this activity being restored by addition of PA. In summary, these data indicate that PLCgamma, activated at least partially by PI3-kinase, is a link between insulin receptor and PKCzeta through the production of PA and could mediate insulin-induced glucose uptake and GLUT4 translocation.  相似文献   
992.
We report extensive density functional theory studies of the structures and vibrational frequencies of Tp3,5-MeRhH2(H2) in its ground and various transition states as well as the first direct comparison of observed and calculated inelastic neutron scattering (INS) vibrational spectra on this type of compound. Geometry optimizations produced canted η2-dihydrogen dihydride local minima of C1 symmetry; with HH distances for the C1 minimum energy structure of 0.842 and 0.898 Å and barriers to rotation of 0.34 and 0.50 kcal mol−1, respectively for B3LYP/BS1 and BP86/BS1 calculations of Tp3,5-MeRhH2(H2). The latter results from one transition state rotated approximately 60° away (a second lower energy transition state which is a few hundreds of a kcal mol−1 above the C1 MIN is rotated approximately 30° away). With these calculated d(HH) values for the C1 MIN the previously reported experimental data on the rotation of the dihydrogen ligand yields an experimental barrier to rotation of 1 kcal mol−1 and places the torsional transition at 200 cm−1 in the INS spectrum. Optimization of the Rh structure, that is analogous to the related Ir(V) Cs minimum found for TpIrH4, generates a high-energy (>4 cal mol−1) Cs transition state TpRhIIIH4 structure with an η3-H3 − ligand. This transition state (Cs TSE) exchanges the hydrogen in the mirror plane between two chiral C1 MIN structures. Comparisons between observed and computed INS spectra suggests that the experimental INS spectrum be viewed as resulting from a quantum-averaged ground state encompassing at least two of the low energy structures found in our calculations.  相似文献   
993.
The solitary ascidian Styela plicata is an introduced species in harbors of temperate and tropical oceans around the world. The invasive potential of this species has been studied through reproductive biology and population genetics but no study has yet examined the microbial diversity associated with this ascidian and its potential role in host ecology and invasiveness. Here, we used 16S rRNA gene tag pyrosequencing and transmission electron microscopy to characterize the abundance, diversity and host-specificity of bacteria associated with 3 Mediterranean individuals of S. plicata. Microscopy revealed low bacterial abundance in the inner tunic and their absence from gonad tissues, while pyrosequencing revealed a high diversity of S. plicata-associated bacteria (284 OTUs from 16 microbial phyla) in the inner tunic. The core symbiont community was small and consisted of 16 OTUs present in all S. plicata hosts. This core community included a recently described ascidian symbiont (Hasllibacter halocynthiae) and several known sponge and coral symbionts, including a strictly anaerobic Chloroflexi lineage. Most recovered bacterial OTUs (79.6 %) were present in single S. plicata individuals and statistical analyses of genetic diversity and community structure confirmed high variability of bacterial communities among host individuals. These results suggest that diverse and variable bacterial communities inhabit the tunic of S. plicata, including environmental and host-associated bacterial lineages that appear to be re-established each host generation. We hypothesize that bacterial communities in S. plicata are dynamic and have the potential to aid host acclimation to new habitats by establishing relationships with beneficial, locally sourced bacteria.  相似文献   
994.
Repetitive, acute inflammatory insults elicited by cigarette smoke (CS) contribute to the development of chronic obstructive pulmonary disease (COPD), a disorder associated with lung inflammation and mucus hypersecretion. Presently, there is a poor understanding of the acute inflammatory mechanisms involved in this process. The aims of this study were to develop an acute model to investigate temporal inflammatory changes occurring after CS exposure. Rats were exposed to whole body CS (once daily) generated from filtered research cigarettes. Initial studies indicated the generation of a neutrophilic/mucus hypersecreting lung phenotype in <4 days. Subsequent studies demonstrated that just two exposures to CS (15 h apart) elicited a robust inflammatory/mucus hypersecretory phenotype that was used to investigate mechanisms driving this response. Cytokine-induced neutrophil chemoattractants (CINCs) 1-3, the rat growth-related oncogene-alpha family homologs, and IL-1beta demonstrated time-dependent increases in lung tissue or lavage fluid over the 24-h period following CS exposure. The temporal changes in the neutrophil chemokines, CINCs 1-3, mirrored increases in neutrophil infiltration, indicative of a role in neutrophil migration. In addition, a specific CXCR2 antagonist, SB-332235, effectively inhibited CS-induced neutrophilia in a dose-dependent manner, supporting this conclusion. This modeling of the response of the rat airways to acute CS exposure indicates 1) as few as two exposures to CS will induce a phenotype with similarities to COPD and 2) a novel role for CINCs in the generation of this response. These observations represent a paradigm for the study of acute, repetitive lung insults that contribute to the development of chronic disease.  相似文献   
995.
Chronic GnRH treatment causes homologous desensitization by reducing GnRH receptor and Gq/11 expression and by down-regulating protein kinase C (PKC), cAMP, and calcium-dependent signaling. It also causes heterologous desensitization of other Gq-coupled receptors, but the mechanisms involved remain elusive. In this study, we investigated the effect of constitutive activation of Gq signaling on GnRH-induced signaling and LH secretion. We show that adenoviral expression of a constitutively active mutant Gq(Q209L) results in a state of GnRH resistance but does not alter GnRH receptor expression. We observed that Gq(Q209L) reduced expression of phospholipase C (PLC)beta1, a target of Gq in these cells, but not PLCbeta3 or PLCgamma1. Downstream of PLCbeta1, expression of novel PKC isoforms (delta and epsilon) was reduced. Adenoviral expression of a kinase-inactive, dominant-negative version of PKCdelta impaired GnRH activation of ERK, but not induction of c-Fos and LHbeta proteins, indicating that the novel PKCs signal to the ERK cascade. Despite reductions in PLCbeta1, calcium responses to GnRH were elevated in Gq(Q209L)-infected cells due to increased calcium influx through L-type calcium channels. Paradoxically, downstream calcium-dependent signaling and LH secretion were impaired. Taken together, these data demonstrate that prolonged activation of the Gq pathway desensitizes GnRH-induced signaling by selectively down-regulating the PLC-PKC-Ca2+ pathway, leading to reduced LHbeta synthesis and LH secretion.  相似文献   
996.
Sepsis and multiple organ failure are common causes of death in patients admitted to intensive care units. The incidence of sepsis and associated mortalities has been steadily increasing over the past 20 years. Sepsis is a complex inflammatory condition, the precise causes of which are still poorly understood. Animal models of sepsis have the potential to cause substantial suffering, and many of them have been poorly representative of the human syndrome. However, a number of non-animal approaches, including in vitro, in silico and clinical studies, show promise for addressing this situation. This report is based on discussions held at an expert workshop convened by Focus on Alternatives and held in 2004 at the Wellcome Trust, London. It provides an overview of some non-animal approaches to sepsis research, including their strengths and weaknesses, and argues that they should be prioritised for further development.  相似文献   
997.
Data from population- and clinic-based epidemiologic studies of rheumatoid arthritis patients suggest that individuals with rheumatoid arthritis are at risk for developing clinically evident congestive heart failure. Many established risk factors for congestive heart failure are over-represented in rheumatoid arthritis and likely account for some of the increased risk observed. In particular, data from animal models of cytokine-induced congestive heart failure have implicated the same inflammatory cytokines produced in abundance by rheumatoid synovium as the driving force behind maladaptive processes in the myocardium leading to congestive heart failure. At present, however, the direct effects of inflammatory cytokines (and rheumatoid arthritis therapies) on the myocardia of rheumatoid arthritis patients are incompletely understood.  相似文献   
998.
Ralstonia eutropha JMP134 2,4,6-trichlorophenol (2,4,6-TCP) 4-monooxygenase catalyzes sequential dechlorinations of 2,4,6-TCP to 6-chlorohydroxyquinol. Although 2,6-dichlorohydroxyquinol is a logical metabolic intermediate, the enzyme hardly uses it as a substrate, implying it may not be a true intermediate. Evidence is provided to support the proposition that the monooxygenase oxidized 2,4,6-TCP to 2,6-dichloroquinone that remained with the enzyme and got hydrolyzed to 2-chlorohydroxyquinone, which was chemically reduced by ascorbate and NADH to 6-chlorohydroxyquinol. When the monooxygenase oxidized 2,6-dichlorophenol, the product was 2,6-dichloroquinol, which was not further converted to 6-chlorohydroxyquinol, implying that the enzyme only converts 2,6-dichloroquinone to 6-chlorohydroxyquinol. Stoichiometric analysis indicated the consumption of one O2 molecule per 2,4,6-TCP converted to 6-chlorohydroxyquinol, ruling out the possibility of two oxidative reactions. Experiments with 18O-labeling gave direct evidence for the incorporation of oxygen from both O2 and H2O into the produced 6-chlorohydroxyquinol. A monooxygenase that catalyzes hydroxylation by both oxidative and hydrolytic reactions has not been reported to date. The ability of the enzyme to perform two types of reactions is not due to the presence of a second functional domain but rather is due to catalytic promiscuity, as a homologous monooxygenase converts 2,4,6-TCP to only 2,6-dichloroquinol. Employing both conventional catalysis and catalytic promiscuity of a single enzyme in two consecutive steps of a metabolic pathway has been unknown previously.  相似文献   
999.
Under neutrality all classes of mutation have an equal probability of becoming fixed in a population. In this article, we describe our analysis of the frequency distributions of >5000 human SNPs and provide evident of biases in the process of fixation of certain classes of point mutation that are most likely to be attributable to biased gene conversion. The results indicate an increased fixation probability of mutations that result in the incorporation of a GC base pair. Furthermore, in transcribed regions this process exhibits strand asymmetry, and is biased towards preserving a G base on the coding strand. Biased gene conversion has the potential to explain both existence of isochores and the compositional asymmetry in mammalian transcribed regions.  相似文献   
1000.
In vitro studies of non-viral gene delivery vectors are typically not performed at physiological conditions, and thus may not provide meaningful results for in vivo investigations. We determine if polycation-plasmid DNA complexes (polyplexes) exploited for in vitro studies behave similarly to variants more applicable to in vivo use by examining their cellular uptake and trafficking. Branched polyethylenimine (25 kDa) or a linear beta-cyclodextrin-containing polymer are each used to formulate polyplexes, which can be PEGylated (PEG: poly(ethylene glycol)) to create particles stable in physiological salt concentrations. Particle size, cellular uptake, intracellular trafficking, and reporter gene expression are reported for polyplexes and for their PEGylated variants. PEGylation confers salt stability to particles but produced a reduction in luciferase expression. Examination of in vitro particle internalization by transmission electron microscopy shows unmodified polyplexes entering cells as large aggregates while PEGylated particles remain small and discrete, both outside and within cells. Unmodified and PEGylated particles enter cells through the endocytic pathway and accumulate in a perinuclear region. Immunolabeling reveals unpackaged exogenous DNA in the cytoplasm and nuclei. It appears all particle types traffic towards the nucleus within vesicles and undergo degradation in vesicles and/or cytoplasm, and eventually some exogenous DNA enters the nucleus, where it is transcribed. In comparing polyplexes and their PEGylated variants, significant differences in particle morphology, cellular uptake, and resultant expression suggest that in vitro studies should be conducted with particles prepared for physiological conditions if the results are to be relevant to in vivo performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号