首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1369篇
  免费   224篇
  2022年   8篇
  2021年   29篇
  2020年   13篇
  2019年   9篇
  2018年   14篇
  2017年   8篇
  2016年   29篇
  2015年   63篇
  2014年   59篇
  2013年   53篇
  2012年   65篇
  2011年   74篇
  2010年   37篇
  2009年   34篇
  2008年   67篇
  2007年   45篇
  2006年   43篇
  2005年   59篇
  2004年   53篇
  2003年   42篇
  2002年   49篇
  2001年   54篇
  2000年   49篇
  1999年   34篇
  1998年   22篇
  1997年   23篇
  1996年   12篇
  1995年   20篇
  1994年   14篇
  1993年   14篇
  1992年   31篇
  1991年   26篇
  1990年   36篇
  1989年   33篇
  1988年   24篇
  1987年   22篇
  1986年   17篇
  1985年   30篇
  1984年   19篇
  1983年   10篇
  1982年   18篇
  1981年   17篇
  1980年   14篇
  1977年   10篇
  1975年   20篇
  1974年   10篇
  1972年   15篇
  1971年   12篇
  1970年   10篇
  1969年   14篇
排序方式: 共有1593条查询结果,搜索用时 31 毫秒
961.
962.
963.
Alphaviruses are a group of widely distributed human and animal pathogens. It is well established that their replication is sensitive to type I IFN treatment, but the mechanism of IFN inhibitory function remains poorly understood. Using a new experimental system, we demonstrate that in the presence of IFN-β, activation of interferon-stimulated genes (ISGs) does not interfere with either attachment of alphavirus virions to the cells, or their entry and nucleocapsid disassembly. However, it strongly affects translation of the virion-delivered virus-specific RNAs. One of the ISG products, IFIT1 protein, plays a major role in this translation block, although an IFIT1-independent mechanism is also involved. The 5’UTRs of the alphavirus genomes were found to differ significantly in their ability to drive translation in the presence of increased concentration of IFIT1. Prior studies have shown that adaptation of naturally circulating alphaviruses to replication in tissue culture results in accumulation of mutations in the 5’UTR, which increase the efficiency of the promoter located in the 5’end of the genome. Here, we show that these mutations also decrease resistance of viral RNA to IFIT1-induced translation inhibition. In the presence of higher levels of IFIT1, alphaviruses with wt 5’UTRs became potent inducers of type I IFN, suggesting a new mechanism of type I IFN induction. We applied this knowledge of IFIT1 interaction with alphaviruses to develop new attenuated variants of Venezuelan equine encephalitis and chikungunya viruses that are more sensitive to the antiviral effects of IFIT1, and thus could serve as novel vaccine candidates.  相似文献   
964.
Ecology and biomechanics play central roles in the generation of phenotypic diversity. When unrelated taxa invade a similar ecological niche, biomechanical demands can drive convergent morphological transformations. Thus, examining convergence helps to elucidate the key catalysts of phenotypic change. Gliding mammals are often presented as a classic case of convergent evolution because they independently evolved in numerous clades, each possessing patagia (“wing” membranes) that generate lift during gliding. We use phylogenetic comparative methods to test whether the skeletal morphologies of the six clades of extant gliding mammals demonstrate convergence. Our results indicate that glider skeletons are convergent, with glider groups consistently evolving proportionally longer, more gracile limbs than arborealists, likely to increase patagial surface area. Nonetheless, we interpret gliders to represent incomplete convergence because (1) evolutionary model-fitting analyses do not indicate strong selective pressures for glider trait optima, (2) the three marsupial glider groups diverge rather than converge, and (3) the gliding groups remain separated in morphospace (rather than converging on a single morphotype), which is reflected by an unexpectedly high level of morphological disparity. That glider skeletons are morphologically diverse is further demonstrated by fossil gliders from the Mesozoic Era, which possess unique skeletal characteristics that are absent in extant gliders. Glider morphologies may be strongly influenced by factors such as body size and attachment location of patagia on the forelimb, which can vary among clades. Thus, convergence in gliders appears to be driven by a simple lengthening of the limbs, whereas additional skeletal traits reflect nuances of the gliding apparatus that are distinct among different evolutionary lineages. Our unexpected results add to growing evidence that incomplete convergence is prevalent in vertebrate clades, even among classic cases of convergence, and they highlight the importance of examining form-function relationships in light of phylogeny, biomechanics, and the fossil record.  相似文献   
965.
The fatty acid composition from mycelia of Streptomyces hygroscopicus strains was studied. A significant proportion of C18 : 2 was found in cultures. High levels of C16 : 0, iso-C16 : 0 and C18 : 1 were also detected in all S. hygroscopicus strains. The different representatives of S. hygroscopicus had almost the same proportion of unsaturated fatty acids. Certain shifts in the amount of iso, anteiso and straight-chain fatty acids in some cultures were revealed. This might be explained by the adaptation capability of strains belonging to one species to form a variety of available fatty acids determined by particular cell membrane composition favouring certain antibiotic biosynthesis.  相似文献   
966.
967.
968.
969.
Mode of action of colicin ib: formation of ion-permeable membrane channels   总被引:4,自引:0,他引:4  
Addition of purified colicin Ib to whole Escherichia coli cells or cytoplasmic membrane vesicles inhibits their subsequent ability to generate a membrane potential. In addition, this colicin is shown to bring about a voltage-dependent increase in the conductance of an artificial planar bilayer membrane prepared from soybean phospholipids. This results from the formation of ion-permeable channels. These data provide strong evidence that the depolarization of Escherichia coli cells by this colicin results from an Ib-induced increase in membrane permeability to ions.  相似文献   
970.
Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with ‘McNeal’ wheat, ‘Otana’ oat, and ‘Harrington’ barley, plants that were mechanically injured, attacked by either of two Oulema spp. (melanopus or cyanella) beetles, or infected by one of the three Fusarium spp. (graminearum, avenaceum, or culmorum), had significant VOC induction compared to undamaged plants. Mechanical injury to the main stem or one leaf caused the induction of one green leaf volatile (GLV) - (Z)-3-hexenol, and three terpenes (β-linalool, β-caryophyllene, and α-pinene) with all three grasses; wheat and barley also showed β-linalool oxide induction. The blend of induced VOCs after Fusarium spp. infestation or Oulema spp. herbivory was dominated by GLVs ((Z)-3-hexenal, (E)-2-hexenal, (E)-2-hexenol, (Z)-3-hexenyl acetate, and 1-hexenyl acetate) and β-linalool and β-caryophyllene; beetle herbivory also induced (E)-β-farnesene. Different ratios of individual VOCs were induced between the two Oulema spp. for each cereal grass and different ratios across the three cereals for each beetle species. Also, different ratios of individual VOCs were induced between the three Fusarium spp. for each cereal grass and different ratios across the three cereals for each fungal pathogen species. Our results are preliminary since we could not simultaneously measure VOC induction from controls with each of the ten different injury treatments for each of the three cereals. However, the comparison of mechanical injury, insect herbivory, and fungal infection has not been previously examined with VOC responses from three different plant species within the same family. Also, our work suggests large qualitative and quantitative overlap of VOC induction from plants of all three cereals having beetle herbivory injury when compared to infection injury from necrotrophic fungal pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号