首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4161篇
  免费   324篇
  国内免费   3篇
  2021年   61篇
  2020年   27篇
  2019年   33篇
  2018年   50篇
  2017年   42篇
  2016年   83篇
  2015年   116篇
  2014年   136篇
  2013年   216篇
  2012年   278篇
  2011年   263篇
  2010年   195篇
  2009年   207篇
  2008年   256篇
  2007年   257篇
  2006年   216篇
  2005年   237篇
  2004年   254篇
  2003年   216篇
  2002年   190篇
  2001年   53篇
  2000年   38篇
  1999年   49篇
  1998年   62篇
  1997年   61篇
  1996年   38篇
  1995年   36篇
  1994年   32篇
  1993年   45篇
  1992年   43篇
  1991年   44篇
  1990年   32篇
  1989年   24篇
  1988年   33篇
  1987年   26篇
  1986年   31篇
  1985年   31篇
  1984年   40篇
  1983年   30篇
  1982年   32篇
  1981年   38篇
  1980年   25篇
  1979年   23篇
  1978年   18篇
  1977年   34篇
  1976年   18篇
  1975年   17篇
  1974年   25篇
  1973年   16篇
  1970年   16篇
排序方式: 共有4488条查询结果,搜索用时 15 毫秒
181.
The success of invasive alien and common native species may be explained by the same underlying mechanisms. Differences in intraspecific competition as well as differences in plant–soil feedback have been put forward as potential determinants of plant success. We teased apart the relative roles of competition and plant–soil feedback in a greenhouse experiment with 30 common and rare alien and native species from nine plant families. We tested whether plant biomass decreased less for common than rare species, regardless of origin, when grown at higher relative frequencies (1, 3 or 6 out of 9 plants per pot) in a community and in soil previously conditioned by the same species at different frequencies (0, 1, 3 or 6 out of 9 plants per pot) in an orthogonal design for these two factors. Plant survival decreased slightly, but non‐significantly, for all species when grown in soil previously occupied by conspecifics. Among surviving plants, we found a decrease in biomass with increasing intraspecific competition across all species (regardless of origin or commonness), and alien species were more negatively affected by previous high plant frequency than native species, but only marginally significantly so. Our findings suggest that, while intraspecific competition limits individual biomass in a density‐dependent manner, these effects do not depend on species origin or commonness. Notably, alien species but not natives showed a decrease in performance when grown in soil pre‐conditioned with a higher frequency of conspecifics. In conclusion, soil‐borne pathogen accumulation might be weak in its effects on plant performance compared to intraspecific competition, with neither being clearly linked to species commonness.  相似文献   
182.
The leaves of Typha are noteworthy in terms of their mechanical properties. We determined the mechanical properties of the fiber cables within the leaf. We found that in vegetative plants, the lignified fiber cables isolated from the leaf sheath and nonlignified fiber cables isolated from the leaf blade of Typha angustifolia differ in their diameter, swelling capacity, Young’s modulus, tensile strength, and break load. These differing properties are related to their contributions to stability in the two regions of the leaf.  相似文献   
183.
Identifying the plant traits and patterns of trait distribution in communities that are responsible for biotic regulation of CO2 uptake–climate responses remains a priority for modeling terrestrial C dynamics. We used remotely sensed estimates of gross primary productivity (GPP) from plots planted to different combinations of perennial grassland species in order to determine links between traits and GPP–climate relationships. Climatic variables explained about 50% of the variance in temporal trends in GPP despite large variation in CO2 uptake among seasons, years, and plots of differing composition. GPP was highly correlated with contemporary changes in net radiation (Rn) and precipitation deficit (potential evapotranspiration minus precipitation) but was negatively correlated with precipitation summed over 210 days prior to flux measurements. Plots differed in GPP–Rn and GPP–water (deficit, precipitation) relationships. Accounting for differences in GPP–climate relationships explained an additional 11% of variance in GPP. Plot differences in GPP–Rn and GPP–precipitation slopes were linked to differences in community-level light-use efficiency (GEE*). Plot differences in GPP–deficit slopes were linked to differences in a species abundance-weighted index of specific leaf area (SLA). GEE* and weighted SLA represent vegetation properties that may regulate how CO2 uptake responds to climatic variation in grasslands.  相似文献   
184.
Life has existed on the Earth for approximately four billion years. The sheer depth of evolutionary time, and the diversity of extant species, makes it tempting to assume that all the key biochemical innovations underpinning life have already happened. But we are only a little over halfway through the trajectory of life on our planet. In this Opinion piece, we argue: (i) that sufficient time remains for the evolution of new processes at the heart of metabolic biochemistry and (ii) that synthetic biology is providing predictive insights into the nature of these innovations. By way of example, we focus on engineered solutions to existing inefficiencies in energy generation, and on the complex, synthetic regulatory circuits that are currently being implemented.  相似文献   
185.
186.
187.
Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild‐type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high‐resolution electron backscatter diffraction and carbon isotope analyses (as δ13C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate‐driven change to habitat acidification.  相似文献   
188.
One hundred and two conformations of alpha- and beta-D-allopyranose, the C-3 substituted epimer of glucopyranose, were geometry optimized using the density functional, B3LYP, and the basis set, 6-311++G **. Full geometry optimization was performed on different ring geometries and on the hydroxymethyl rotamers (gg/gt/tg). Analytically derived Hessians were used to calculate zero point energy, enthalpy, and entropy. The lowest energy and free energy conformation found is the alpha-tg(g-)-4C1-c conformation, which is only slightly higher in electronic (approximately 0.2 kcal/mol) and free energy than the lowest energy alpha-D-glucopyranose. The in vacuo calculations showed a small (approximately 0.3 kcal/mol) energetic preference for the alpha- over the beta-anomer for allopyranose in the 4C1 conformation, whereas in the 1C4 conformation a considerable (approximately 1.6 kcal/mol) energetic preference for the beta- over the alpha-anomer for allopyranose was encountered. The results are compared to previous aldohexose calculations in vacuo. Boat and skew forms were found that remained stable upon gradient optimization although many starting boat conformations moved to other skew forms upon optimization. As found for glucose, mannose, and galactose the orientation and interaction of the hydroxyl groups make the most significant contributions to the conformation/energy relationship in vacuo. A comparison of different basis sets and density functionals is made in the Discussion section, confirming the appropriateness of the level of theory used here.  相似文献   
189.
Sex differences in mouse models of asthma   总被引:1,自引:0,他引:1  
Differences in disease susceptibility and prognosis between men and women are known to occur in the incidence and development of neurodegenerative, cardiovascular, and immunological disorders. In the lung there are also sex-based differences in the incidence, prevalence, and pathogenesis of lung cancer, cystic fibrosis, COPD, and asthma. In the general population, sex-based differences in asthma have been shown by epidemiologic studies, but unfortunately these studies are not consistent in their conclusions. This variability in human epidemiological studies justifies the need for more focused studies of the effects of specific hormones. Such specific mechanistic studies can most easily be performed in animal models, and since mouse models have the potential for separating specific genetic factors from environmental and exogenous factors, this species has become increasingly important in the design, analysis, and interpretation of asthma research. This review will document the male and female differences in airway function of na?ve and sensitized mouse models, as well as the great variability in the functional measurements of airway tone. Until the situation is better understood, this variability between males and females should be kept in mind when designing, analyzing, and interpreting studies of smooth muscle responses in animal models and human subjects.  相似文献   
190.
It is often suggested that heterozygosity at major histocompatibility complex (MHC) loci confers enhanced resistance to infectious diseases (heterozygote advantage, HA, hypothesis), and overdominant selection should contribute to the evolution of these highly polymorphic genes. The evidence for the HA hypothesis is mixed and mainly from laboratory studies on inbred congenic mice, leaving the importance of MHC heterozygosity for natural populations unclear. We tested the HA hypothesis by infecting mice, produced by crossbreeding congenic C57BL/10 with wild ones, with different strains of Salmonella, both in laboratory and in large population enclosures. In the laboratory, we found that MHC influenced resistance, despite interacting wild-derived background loci. Surprisingly, resistance was mostly recessive rather than dominant, unlike in most inbred mouse strains, and it was never overdominant. In the enclosures, heterozygotes did not show better resistance, survival, or reproductive success compared to homozygotes. On the contrary, infected heterozygous females produced significantly fewer pups than homozygotes. Our results show that MHC effects are not masked on an outbred genetic background, and that MHC heterozygosity provides no immunological benefits when resistance is recessive, and can actually reduce fitness. These findings challenge the HA hypothesis and emphasize the need for studies on wild, genetically diverse species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号