首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   8篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
31.
The essential amino acid leucine serves as a signal that activates protein synthesis. A new study by She et al. (2007) in this issue of Cell Metabolism shows that raising circulating leucine by blocking leucine breakdown drives a futile cycle of protein synthesis and degradation that contributes to higher-energy expenditure, resistance to dietary obesity, and improved insulin sensitivity.  相似文献   
32.
33.
Rat hepatic glutaminase: purification and immunochemical characterization   总被引:1,自引:0,他引:1  
A method for the purification of phosphate-activated glutaminase from the liver of streptozotocin-diabetic rats is described. The procedure involves solubilization of glutaminase activity from isolated mitochondria by sonication, followed by ammonium sulfate precipitation, polyethylene glycol precipitation, and sequential chromatography on DEAE, hydroxylapatite, and zinc-chelated resins. The enzyme was purified 600-fold to a specific activity of 31-57 U/mg protein. The purified enzyme has an apparent subunit molecular mass of 58,000-Da and is greater than 80% pure by scanning densitometry of sodium dodecyl sulfate-polyacrylamide gels. The purified enzyme has an apparent Km for glutamine of 17 mM and a pH optimum between 7.8 and 8.2. The physical and kinetic properties of this enzyme are similar to those of the enzyme from normal rat liver. Polyclonal antibodies raised against the enzyme specifically inhibit hepatic glutaminase activity and react primarily with a 58,000-Da peptide in liver fractions on immunoblots. These antibodies were used in equivalence point titrations and immunoblots to provide evidence for increased concentration of glutaminase protein in the liver of diabetic rats with no change in specific activity of the enzyme. In addition, the antibodies cross-react, at low affinity, with kidney-type glutaminases. On immunoblots, the antibodies did not react with fetal liver, mammary gland, or lung. Antibodies to rat hepatic glutaminase should prove useful as tools to study the long-term regulation of the enzyme.  相似文献   
34.
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine. Two genes (MAT1A and MAT2A) encode for the catalytic subunit of MAT, while a third gene (MAT2β) encodes for a regulatory subunit (MAT II β) that regulates the activity of the MAT2A-encoded isoenzyme and intracellular S-adenosylmethionine levels. Our previous work identified MAT2β as a candidate gene for intramuscular fat (IMF) deposition in porcine skeletal muscle by microarray technology. Here, we cloned porcine MAT2β cDNA and compared its expression pattern in subcutaneous adipose tissue and skeletal muscle from obese (Rongchang Breed) and lean (Pig Improvement Company, PIC) pigs (n = 6). The porcine MAT2β cDNA was 1,800 bp long and encodes for 334 amino acids sharing high similarity with other species. MAT2β is expressed at a higher level in liver and duodenum, followed by the stomach, fat and longissinus dorsi muscle. As expected, both subcutaneous fat content and IMF content were higher in obese than in lean pigs (both P < 0.01). MAT2β mRNA abundance was lower in both subcutaneous adipose tissue and skeletal muscle in obese pigs compared with lean pigs (both P < 0.01). MAT II β protein content was lower in skeletal muscle in obese than in lean pigs (P < 0.05), whereas the opposite was observed in subcutaneous adipose tissue (P < 0.01). These data demonstrated an obesity-related expression variation of the MAT II β subunit in skeletal muscle and adipose tissue in pigs, and suggest a novel role for the MAT2β gene in regulation of IMF deposition in skeletal muscle.  相似文献   
35.
36.
The studies reported here were undertaken to examine the antihyperglycemic activity of an ethanolic extract of Artemisia dracunculus L., called Tarralin in diabetic and non-diabetic animals. In genetically diabetic KK-A(gamma) mice, Tarralin treatment by gavage (500 mg/kg body wt./day for 7 days) lowered elevated blood glucose levels by 24% from 479+/-25 to 352+/-16 mg/dl relative to control animals. In comparison, treatment with the known antidiabetic drugs, troglitazone (30 mg/kg body wt./day) and metformin (300 mg/kg body wt./day), decreased blood glucose concentrations by 28% and 41%, respectively. Blood insulin concentrations were reduced in the KK-A(gamma) mice by 33% with Tarralin, 48% with troglitazone and 52% with metformin. In (STZ)-induced diabetic mice, Tarralin treatment, (500 mg/kg body wt./day for 7 days), also significantly lowered blood glucose concentrations, by 20%, from 429+/-41 to 376+/-58 mg/dl relative to control. As a possible mechanism, Tarralin was shown to significantly decrease phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression by 28% in STZ-induced diabetic rats. In non-diabetic animals, treatment with Tarralin did not significantly alter PEPCK expression, blood glucose or insulin concentrations. The extract was also shown to increase the binding of glucagon-like peptide (GLP-1) to its receptor in vitro. These results indicate that Tarralin has antihyperglycemic activity and a potential role in the management of diabetic states.  相似文献   
37.
Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.  相似文献   
38.
Ogilvie  A. R.  Watford  M.  Wu  G.  Sukumar  D.  Kwon  J.  Shapses  S. A. 《Amino acids》2021,53(9):1467-1472

Dietary protein alters circulating amino acid (AAs) levels and higher protein intake (HP) is one means of losing weight. We examined 34 overweight and obese women (57 ± 4 years) during 6 months of energy restriction (7.3 ± 3.8% weight loss) divided into groups consuming either normal protein (NP; 18.6 energy% protein) or HP (24.3 energy% protein). There was a reduction in fasting serum glucogenic AAs (p = 0.015) that also associated with greater weight loss (p < 0.05) in the HP group, but not in the NP group. These findings have implications for nutrient prioritization during energy restriction.

  相似文献   
39.

Background

The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees.

Results

After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect.

Conclusions

Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1193-6) contains supplementary material, which is available to authorized users.  相似文献   
40.
The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs). In addition, LNFPIII-NGC preferentially induced the production of Th2 “favoring” chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 “favoring” chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1–3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1–3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK) axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo therapeutic effect of LNFPIII-NGC treatment for inflammation based diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号