首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
  117篇
  2019年   3篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
  1963年   2篇
  1962年   2篇
  1959年   1篇
  1958年   1篇
  1956年   1篇
  1944年   1篇
排序方式: 共有117条查询结果,搜索用时 0 毫秒
21.
22.

Background  

DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability.  相似文献   
23.
24.

Background  

A common feature of microarray experiments is the occurence of missing gene expression data. These missing values occur for a variety of reasons, in particular, because of the filtering of poor quality spots and the removal of undefined values when a logarithmic transformation is applied to negative background-corrected intensities. The efficiency and power of an analysis performed can be substantially reduced by having an incomplete matrix of gene intensities. Additionally, most statistical methods require a complete intensity matrix. Furthermore, biases may be introduced into analyses through missing information on some genes. Thus methods for appropriately replacing (imputing) missing data and/or weighting poor quality spots are required.  相似文献   
25.
Gillard  BK; Clement  RG; Marcus  DM 《Glycobiology》1998,8(9):885-890
There are several pathways for the incorporation of sugars into glycosphingolipids (GSL). Sugars can be added to ceramide that contains sphinganine (dihydrosphingosine) synthesized de novo (pathway 1), to ceramide synthesized from sphingoid bases produced by hydrolysis of sphingolipids (pathway 2), and into GSL recycling from the endosomal pathway through the Golgi (pathway 3). We reported previously the surprising observation that SW13 cells, a human adrenal carcinoma cell line, synthesize most of their GSL in pathway 2. We now present data on the synthesis of GSL in four additional cell lines. Approximately 90% of sugar incorporation took place in pathway 2, and 10% or less in pathway 1, in human foreskin fibroblasts and NB41A3 neuroblastoma cells. In contrast, approximately 50-90% of sugar incorporation took place in pathway 1 in C2C12 myoblasts. The C2C12 cells divide more rapidly and synthesize 10-14 times as much GSL as the other three cell lines. In C6 glioma cells, approximately 30% of sugar incorporation occurred in pathway 1 and 60% in pathway 2. There was no relation between the utilization of pathways for GSL and sphingomyelin synthesis in foreskin fibroblasts and C2C12 cells. In both cells pathways 1 and 2 each accounted for 50% of incorporation of choline into sphingomyelin. In five of the six cell lines that we have studied, most GSL synthesis takes place in pathway 2. We suggest that when the need for synthesis is relatively low, as in slowly dividing cells, GSL are synthesized predominantly from sphingoid bases salvaged from the hydrolytic pathway. When cells are dividing more rapidly, the need for increased synthesis is met by upregulating the de novo pathway.   相似文献   
26.
27.
28.
Systematic Monte Carlo simulations of simple lattice models show that the final stage of protein folding is an ordered process where native contacts get locked (i.e., the residues come into contact and remain in contact for the duration of the folding process) in a well‐defined order. The detailed study of the folding dynamics of protein‐like sequences designed as to exhibit different contact energy distributions, as well as different degrees of sequence optimization (i.e., participation of non‐native interactions in the folding process), reveals significant differences in the corresponding locking scenarios—the collection of native contacts and their average locking times, which are largely ascribable to the dynamics of non‐native contacts. Furthermore, strong evidence for a positive role played by non‐native contacts at an early folding stage was also found. Interestingly, for topologically simple target structures, a positive interplay between native and non‐native contacts is observed also toward the end of the folding process, suggesting that non‐native contacts may indeed affect the overall folding process. For target models exhibiting clear two‐state kinetics, the relation between the nucleation mechanism of folding and the locking scenario is investigated. Our results suggest that the stabilization of the folding transition state can be achieved through the establishment of a very small network of native contacts that are the first to lock during the folding process.  相似文献   
29.

Background  

The statistical modeling of biomedical corpora could yield integrated, coarse-to-fine views of biological phenomena that complement discoveries made from analysis of molecular sequence and profiling data. Here, the potential of such modeling is demonstrated by examining the 5,225 free-text items in the Caenorhabditis Genetic Center (CGC) Bibliography using techniques from statistical information retrieval. Items in the CGC biomedical text corpus were modeled using the Latent Dirichlet Allocation (LDA) model. LDA is a hierarchical Bayesian model which represents a document as a random mixture over latent topics; each topic is characterized by a distribution over words.  相似文献   
30.

Background  

The shape of phylogenetic trees has been used to make inferences about the evolutionary process by comparing the shapes of actual phylogenies with those expected under simple models of the speciation process. Previous studies have focused on speciation events, but gene duplication is another lineage splitting event, analogous to speciation, and gene loss or deletion is analogous to extinction. Measures of the shape of gene family phylogenies can thus be used to investigate the processes of gene duplication and loss. We make the first systematic attempt to use tree shape to study gene duplication using human gene phylogenies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号