首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1264篇
  免费   123篇
  国内免费   1篇
  2022年   9篇
  2021年   7篇
  2020年   15篇
  2019年   18篇
  2018年   15篇
  2017年   15篇
  2016年   32篇
  2015年   48篇
  2014年   47篇
  2013年   71篇
  2012年   77篇
  2011年   87篇
  2010年   44篇
  2009年   45篇
  2008年   64篇
  2007年   48篇
  2006年   44篇
  2005年   38篇
  2004年   62篇
  2003年   43篇
  2002年   35篇
  2001年   39篇
  2000年   32篇
  1999年   36篇
  1998年   15篇
  1997年   8篇
  1996年   14篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   30篇
  1991年   16篇
  1990年   25篇
  1989年   20篇
  1988年   13篇
  1987年   8篇
  1986年   16篇
  1985年   11篇
  1984年   13篇
  1983年   16篇
  1981年   15篇
  1980年   12篇
  1979年   8篇
  1978年   9篇
  1975年   10篇
  1974年   12篇
  1973年   15篇
  1972年   10篇
  1969年   9篇
  1966年   8篇
排序方式: 共有1388条查询结果,搜索用时 78 毫秒
161.
It is unknown whether the JAK/STAT/suppressor of cytokine signaling-3 (SOCS-3) intracellular signaling pathway plays a role in tissue growth and metabolism during fetal life. We investigated whether there is a differential profile of SOCS-3 expression in the liver and perirenal adipose tissue during the period of increased fetal growth in late gestation and the impact of fetal growth restriction on SOCS-3 expression in the fetal liver. We also determined whether basal SOCS-3 expression in the fetal liver and perirenal adipose tissue is regulated by endogenous fetal prolactin (PRL). SOCS-3 mRNA abundance was higher in the liver than in the pancreas, spleen, and kidney of the sheep fetus during late gestation. In the liver, SOCS-3 mRNA expression was increased (P < 0.05) between 125 (n = 4) and 145 days (n = 7) gestation and lower (P < 0.05) in growth-restricted compared with normally grown fetal sheep in late gestation. The relative expression of SOCS-3 mRNA in the fetal liver was directly related to the mean plasma PRL concentrations during a 48-h infusion of either a dopaminergic agonist, bromocriptine (n = 7), or saline (n = 5), such that SOCS-3 mRNA expression was lower when plasma PRL concentrations decreased below approximately 20 ng/ml [y = 0.99 - (2.47/x) + (4.96/x(2)); r(2) = 0.91, P < 0.0001, n = 12]. No relationship was shown between the abundance of phospho-STAT5 in the fetal liver and circulating PRL. SOCS-3 expression in perirenal adipose tissue decreased (P < 0001) between 90-91 (n = 6) and 140-145 days (n = 9) gestation and was not related to endogenous PRL concentrations. Thus SOCS-3 is differentially expressed and regulated in key fetal tissues and may play an important and tissue-specific role in the regulation of cellular proliferation and differentiation before birth.  相似文献   
162.
163.
164.
Waters TR  Eryilmaz J  Geddes S  Barrett TE 《FEBS letters》2006,580(27):6423-6427
UvrB is the damage recognition element of the highly conserved UvrABC pathway that functions in the removal of bulky DNA adducts. Pivotal to this is the formation of a damage detection complex that relies on the ability of UvrB to locate and sequester diverse lesions. Whilst structures of UvrB bound to DNA have recently been reported, none address the issue of lesion recognition. Here, we describe the crystal structure of UvrB bound to a pentanucleotide containing a single fluorescein-adducted thymine that reveals a unique mechanism for damage detection entirely dependent on the exclusion of lesions larger than an undamaged nucleotide.  相似文献   
165.
Waters EK  Morrissey JH 《Biochemistry》2006,45(11):3769-3774
Integral membrane proteins, which include many cellular effector proteins and drug targets, can be difficult to produce, purify, and manipulate. Although the isolated ectodomains of many membrane proteins can be expressed as water soluble proteins, biological activity is frequently lost when these proteins are released from the membrane surface. An example is tissue factor, the integral membrane protein that triggers the blood clotting cascade and for which membrane anchoring is essential. Its isolated ectodomain (soluble tissue factor) can be expressed with high yield in bacteria but is orders of magnitude less active than the intact, membrane-anchored protein. We now report full restoration of biological activity to the isolated tissue factor ectodomain via the engineering of a hexahistidine tag onto its C-terminus and its use in combination with membrane bilayers containing nickel-chelating lipids. When soluble tissue factor was tethered to the membrane surface via such metal-chelating lipids, it bound factor VIIa with the same high affinity as wild-type tissue factor, and the resulting factor VIIa-tissue factor complexes supported factor X activation and factor VII autoactivation with essentially wild-type enzyme kinetic constants. Furthermore, when such bilayers were immobilized onto solid supports, they efficiently captured histidine-tagged soluble tissue factor directly from crude culture supernatants, with full biological activity, obviating the need for purification or laborious membrane reconstitution procedures. This strategy is rapid, efficient, scalable, and automatable and should be applicable to other integral membrane proteins, especially those with a single transmembrane domain. Applications include high-throughput screening of mutants or drugs, flow reactors, clinical assays, and point-of-care instrumentation.  相似文献   
166.
167.
168.
Cartilage destruction in osteoarthritis (OA) is thought to be mediated by two main enzyme families; the matrix metalloproteinases (MMPs) are responsible for cartilage collagen breakdown, whereas enzymes from the 'a disintegrin and metalloproteinase domain with thrombospondin motifs' (ADAMTS) family mediate cartilage aggrecan loss. Tissue inhibitors of metalloproteinases (TIMPs) regulate the activity of these enzymes. Although cartilage destruction in OA might be driven by the chondrocyte, low-grade synovitis is reported in patients with all grades of this disease.  相似文献   
169.
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.  相似文献   
170.
ToxA is a proteinaceous necrotrophic effector produced by Stagonospora nodorum and Pyrenophora tritici-repentis. In this study, all eight mature isoforms of the ToxA protein were purified and compared. Circular dichroism spectra indicated that all isoforms were structurally intact and had indistinguishable secondary structural features. ToxA isoforms were infiltrated into wheat lines that carry the sensitivity gene Tsn1. It was observed that different wheat lines carrying identical Tsn1 alleles varied in sensitivity to ToxA. All ToxA isoforms induced necrosis when introduced into any Tsn1 wheat line but we observed quantitative variation in effector activity, with the least-active version found in isolates of P. tritici-repentis. Pathogen sporulation increased with higher doses of ToxA. The isoforms that induced the most rapid necrosis also induced the most sporulation, indicating that pathogen fitness is affected by differences in ToxA activity. We show that differences in toxin activity encoded by a single gene can contribute to the quantitative inheritance of necrotrophic virulence. Our findings support the hypothesis that the variation at ToxA results from selection that favors increased toxin activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号