首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   125篇
  2023年   9篇
  2022年   20篇
  2021年   37篇
  2020年   18篇
  2019年   24篇
  2018年   31篇
  2017年   49篇
  2016年   52篇
  2015年   70篇
  2014年   82篇
  2013年   169篇
  2012年   158篇
  2011年   128篇
  2010年   79篇
  2009年   68篇
  2008年   131篇
  2007年   109篇
  2006年   108篇
  2005年   96篇
  2004年   109篇
  2003年   92篇
  2002年   79篇
  2001年   32篇
  2000年   28篇
  1999年   23篇
  1998年   21篇
  1997年   18篇
  1996年   14篇
  1995年   12篇
  1994年   6篇
  1993年   7篇
  1992年   18篇
  1991年   22篇
  1990年   15篇
  1989年   18篇
  1988年   8篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   5篇
  1981年   7篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1972年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有2051条查询结果,搜索用时 31 毫秒
951.
The effects of inundation caused by the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields were evaluated. Bacterial communities were compared across three different types of soil, unflooded field (UF) soil, soil flooded for 2 weeks (short term (ST)), and soil flooded for 2 months (long term (LT)), using polymerase chain reaction-pyrosequencing of 16S rRNA genes. Acidobacteria were dominant in UF, with a relative abundance of approximately 35 %, and Proteobacteria dominated flooded soils (30–67 %). Hierarchical cluster analysis indicated that the community structure of soil bacteria in flooded soils (ST and LT) clearly differed from that in UF. Differences between LT and ST fields were rarely observed in terms of chemical properties and microbial community structure at the phylum level. However, sulfur-oxidizing bacteria (SOB) and nitrite-oxidizing bacteria (NOB) in LT tended to occur at high and low abundances, respectively. Halothiobacillus, a halotolerant SOB, was detected in all LT fields. Unexpectedly, a zeta-Proteobacteria, which had previously only been detected in marine environments, was detected in LT fields only. Our results demonstrate that the effects of the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields may have lasted at least 1 year. Furthermore, SOB, NOB, and zeta-Proteobacteria may serve as indicators of the effects of seawater inundation on microorganisms.  相似文献   
952.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   
953.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   
954.
To pick out potent strains which specifically produce one of several pectic enzymes, endo- and exo-polygalacturonase, pectin esterase, macerating, and apple juice clarifying activities were examined with regard to 344 strains of mold (containing 71 strains of phytopathogenic mold) grown on a bran culture medium and 56 strains of shakingly cultured yeast. As the result of screening, Asper gillus saitoi and Penicillium islandicum were isolated as potent specific producers of endo-polygalacturonase. And the composition of pectic enzymes of mold was found to be rather genus or species specific. So far as examined in crude enzyme systems, there was no parallelism between anyone of pectic enzyme activities and apple juice clarifying or macerating activities.  相似文献   
955.
β-Xylosidase was purified 25 fold from a culture filtrate by ammonium sulfate fractionation, DEAE-Sephadex chromatography, column electrophoresis, gel filtration on Biogel P-100, and isoelectric focusing. The purified β-xylosidase was found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis and on disc electrophoresis. A molecular weight of 101,000 was estimated by chromatography on Sephadex G-200, and 102,000 was obtained by SDS polyacrylamide gel electrophoresis. The purified p-xylosidase had an isoelectric point at pH 4.45, and contained 4.5% carbohydrate residue. The optimum activity for the enzyme was found to be at pH 4.5 and 55°C. The enzyme activity was inhibited by Hg2 +, and N-bromosuccinimide at a concentration of 1 x 10?3 m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko13.0 sec”1), p-nitrophenyl β-d-xyloside (ko=2l.3 sec?1), o-nitrophenyl β-d-xyloside (ko = 22.2 sec?1), o-chlorophenyl β-d-xyloside (ko = 20.0 sec?1), p-methylphenyl β-d-xyloside (ko~9.0 sec?1), o-methylphenyl β-d-xyloside (ko= 10.7 sec?1), p-methoxyphenyl β-d-xyloside (ko=10.3 sec?1), o-methoxyphenyl β-d-xyloside (&;o=10.9 sec?1), xylobiose (ko = 36A sec?1), xylotriose (ko = 34.5 sec?1), xylotetraose (ko~HA sec?1), and xylopentaose (ko= 13.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of configuration. The purified p-xylosidase was practically free of α-xylosidase and β-glucosidase activities.  相似文献   
956.
We have prepared a series of N-TFA-glycyl and N-TFA-l-prolyl dipeptide methyl ester from the corresponding dipeptide methyl esters by treating them with (TFA-Gly)2O and TFA-l-Pro-Cl, respectively. Separation of these tripeptide derivatives by G.L.C. was studied and a relationship between the amino acid compositions of the tripeptides and their qi-values (relative retention values) was observed, analogous to the case of the dipeptides previously reported.  相似文献   
957.
The nature of the active site of Chaetomium trilaterale β-xylosidase catalyzing the hydrolysis of β-d-glucopyranoside and β-d-xylopyranoside was investigated by kinetic methods. On experiments with mixed substrates, such as phenyl β-d-xylopyranoside and phenyl β-d-glucopyranoside, the kinetic features agreed very closely with those features theoretically predicted for a single active site of the same enzyme catalyzing the hydrolysis of these two kinds of substrates.

Both the β-glucosidase and β-xylosidase activities were strongly inhibited by glucono-1,5-lactone and nojirimycin (5-amino-5-deoxy-d-glucopyranose). β-Xylosidase activity was inhibited non-competitively by the two inhibitors, but β-glucosidase activity was competitive. Methyl β-d-xylopyranoside, methyl β-d-glucopyranoside, 1-thiophenyl β-d-xylopyranoside, and 1-thiophenyl β-d-glucopyranoside poorly inhibited both activities. Methyl β-d-xylopyranoside inhibited the β-xylosidase activity competitively but the β-glucosidase activity was non-competitive, whereas methyl β-d-glucopyranoside inhibited the β-xylosidase activity non-competitively but the β-glucosidase activity was competitive. 1-Thiophenyl β-d-xylopyranoside and 1-thiophenyl β-d-glucopyranoside behaved as competitive inhibitors.

From these results, it was concluded that the β-xylosidase and β-glucosidase activities reside in one catalytic site, and this suggests that there might be two kinetically distinct binding sites in the active center of the same enzyme.  相似文献   
958.
When mycelia of Streptomyces sp. No. 3137 were cultivated in a medium containing methyl β-xyloside, xylanases (EC 3.2.1.8) were inductively produced into the medium. Three types of enzyme from the culture filtrate have been purified by ultrafiltration with DIAFLO UM-10, chromatography on DEAE-Sephadex A-25, gel filtration on Bio Gel P-100, and isoelectric focusing with Servalyt 6~8 or 9~11. The three purified enzymes, tentatively named X-I, X-II-A, and X-II-B, were homogeneous by Polyacrylamide gel electrophoresis at pH 4.3. The molecular weight of X-I was about 50,000 by SDS-polyacrylamide gel electrophoresis or gel filtration on Bio Gel P-100. The molecular weight of X-II-A and X-II-B were both approximately 25,000 by SDS-polyacrylamide gel electrophoresis and that of X-II-B was 25,680 by the sedimentation-equilibrium method. X-I had an isoelectric point at 7.10, and X-II-A and X-II-B had different isoelectric points, 10.06 and 10.26, respectively. The three enzymes were optimally active at 60~65°C and stable to 55°C. The optimal pH of X-I, X-II-A, and X-II-B were pH 5.5~6.5, 5.0~6.0, and 5.0~6.0, respectively. The ranges of two X-I’s pH stability (pH 1.5 ~ 11.5) were wider than that of X-I’s (pH 3.0 ~ 10.5). These purified preparations hydrolyzed xylotriose, xylotetraose, and xylan but not xylobiose, cellobiose, maltose, carboxymethyl cellulose, or soluble starch. Their actions were inhibited by Hg2+ and Fe3+ ions, sodium dodecyl sulfate, and N-bromosuccinimide.  相似文献   
959.
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll – protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4‐1, a stay‐green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4‐1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation‐related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity‐dependent manner. Surprisingly, the Fv/Fm value remained high in nyc4‐1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4‐1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild‐type and other non‐functional stay‐green mutants, including sgr‐2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll – protein complexes during leaf senescence is discussed.  相似文献   
960.
A novel class of phosphodiesterase 10A (PDE10A) inhibitors with reduced CYP1A2 inhibition were designed and synthesized starting from 2-{[(1-phenyl-1H-benzimidazol-6-yl)oxy]methyl}quinoline (1). Introduction of an isopropyl group at the 2-position and a methoxy group at the 5-position of the benzimidazole ring of lead compound 1 resulted in the identification of 2-{[(2-isopropyl-5-methoxy-1-phenyl-1H-benzimidazol-6-yl)oxy]methyl}quinoline (25b), which exhibited potent PDE10A inhibitory activity with reduced CYP1A2 inhibitory activity compared to compound 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号