首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7006篇
  免费   417篇
  国内免费   1篇
  7424篇
  2022年   45篇
  2021年   94篇
  2020年   40篇
  2019年   60篇
  2018年   84篇
  2017年   97篇
  2016年   124篇
  2015年   174篇
  2014年   270篇
  2013年   344篇
  2012年   380篇
  2011年   380篇
  2010年   205篇
  2009年   183篇
  2008年   353篇
  2007年   340篇
  2006年   325篇
  2005年   343篇
  2004年   313篇
  2003年   303篇
  2002年   317篇
  2001年   242篇
  2000年   252篇
  1999年   186篇
  1998年   105篇
  1997年   63篇
  1996年   57篇
  1995年   59篇
  1994年   56篇
  1993年   56篇
  1992年   125篇
  1991年   142篇
  1990年   107篇
  1989年   108篇
  1988年   122篇
  1987年   99篇
  1986年   94篇
  1985年   86篇
  1984年   62篇
  1983年   64篇
  1982年   45篇
  1980年   39篇
  1979年   49篇
  1978年   44篇
  1976年   32篇
  1975年   36篇
  1974年   32篇
  1973年   36篇
  1971年   34篇
  1970年   29篇
排序方式: 共有7424条查询结果,搜索用时 15 毫秒
951.
The replacement histone H3 gene and its 5'-flanking sequence were isolated from Italian ryegrass by polymerase chain reaction and inverse polymerase chain reaction, respectively. Expression analysis showed that this gene is constitutively expressed in the entire plant. The expression level in leaves was found to be significantly low when compared with that in other tissues. However, the gene expression level in leaves was increased by the treatment with abscisic acid and abiotic stresses such as cold, heat and high-salinity (NaCl). The motif search of the 5'-flanking sequence of the replacement histone H3 gene revealed the presence of several potential cis-acting elements that could respond to the above-mentioned abiotic stresses. In addition to defence-related elements, we also found type I and II-/III-like elements, which are highly conserved motifs in the 5'-regulatory sequence of plant histone genes that are expressed specifically during the S-phase. Experiments using transgenic Italian ryegrass plants proved that the isolated 5'-flanking sequence of the replacement histone H3 gene, which was fused to a beta-glucuronidase reporter gene, was fully functional for inducing gene expression under various abiotic stress conditions.  相似文献   
952.
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase β subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.  相似文献   
953.
Sialic acids are widely distributed among living creatures, from bacteria to mammals, but it has been commonly accepted that they do not exist in plants. However, with the progress of genome analyses, putative gene homologs of animal sialyltransferases have been detected in the genome of some plants. In this study, we cloned three genes from Oryza sativa (Japanese rice) that encode sialyltransferase-like proteins, designated OsSTLP1, 2, and 3, and analyzed the enzymatic activity of the proteins. OsSTLP1, 2, and 3 consist of 393, 396, and 384 amino acids, respectively, and each contains sequences similar to the sialyl motifs that are highly conserved among animal sialyltransferases. The recombinant soluble forms of OsSTLPs produced by COS-7 cells were analyzed for sialyltransferase-like activity. OsSTLP1 exhibited such activity toward the oligosaccharide Galbeta1,4GlcNAc and such glycoproteins as asialofetuin, alpha1-acid glycoprotein, and asialo-alpha1-acid glycoprotein; OsSTLP3 exhibited similar activity toward asialofetuin; and OsSTLP2 exhibited no sialyltransferase-like activity. The sialic acid transferred by OsSTLP1 or 3 was linked to galactose of Galbeta1,4GlcNAc through alpha2,6-linkage. This is the first report of plant proteins having sialyltransferase-like activity.  相似文献   
954.
955.
956.
BACKGROUND: Cryopreservation is a valuable technique for storing heart valve and vascular allografts. However, the biological ramifications of cryopreservation are still unclear; therefore, using animal experiments we assessed how 'cryopreservation' influences graft allogenicity and cell viability. METHODS: Thoracic aortas of Lewis rats were prepared as fresh (F) or cryopreserved (CP) grafts, and implanted into the infrarenal aorta of Lewis or Brown Norway rats (BNs). The grafts and spleens were harvested at post-operative day 7 and 28 (POD7, POD28) for analyses. RESULTS: First, the systemic immune response to transplantation was estimated by mixed lymphocyte reaction analyses using spleen cells from na?ve or recipient BNs. The alloreactivity of the recipients increased to 1.5 times that of the na?ve BNs at POD7 and POD28, when stimulated by mitomycin C-treated Lewis spleen cells. Second, local immune response was estimated by TNFalpha, IFNgamma, and iNOS mRNA expression in the grafts by quantitative PCR, which revealed 20- to 40-fold increases at POD28 after allotransplantation. Third, endothelial cell viability was estimated by endothelial NOS mRNA expression level: it was similar and highest in F and CP grafts before transplantation then significantly decreased after both syngeneic and allogeneic transplantation. Finally, intimal hyperplasia, expressed by I/M ratio, developed over time after allotransplantation, reaching 2.5 times the thickness of F grafts before transplantation. The results of these experiments revealed no difference between F and CP grafts before and after transplantation. CONCLUSION: Cryopreservation did not modify the allogenicity of vascular allografts and had minimal adverse impacts on graft cell viability.  相似文献   
957.
958.
Pulmonary surfactant protein D (SP-D), a member of the collectin group of innate immune proteins, plays important roles in lipopolysaccharide (LPS) recognition. We have previously shown that surfactant protein A (SP-A), a homologous collectin, interacts with Toll-like receptor (TLR) 2, resulting in alteration of TLR2-mediated signaling. In this study, we found that natural and recombinant SP-Ds exhibited specific binding to the extracellular domains of soluble forms of recombinant TLR2 (sTLR2) and TLR4 (sTLR4). Binding was concentration- and Ca2+-dependent, and SP-D bound to N-glycosidase F-treated sTLRs on ligand blots. Anti-SP-D monoclonal antibody 7A10 blocked binding of SP-D to sTLR2 and sTLR4, but there was no inhibitory effect of monoclonal 7C6. Epitope mapping with recombinant proteins consisting of the carbohydrate recognition domain (CRD) and the neck domain plus CRD (NCRD) localized binding sites for 7A10 and 7C6 to sequential epitopes associated with the CRD and the neck domain, respectively. Interactions with 7A10 but not 7C6 were blocked by prior binding of the NCRD to sTLRs. Although antibody 7A10 significantly inhibited the binding of SP-D to its major surfactant-associated ligand, phosphatidylinositol (PI), and Escherichia coli Rc LPS, 7C6 enhanced binding to both molecules. An SP-D(E321Q, N323D) mutant with altered carbohydrate specificity exhibited attenuated PI binding but showed an increased level of binding to sTLRs. Thus, human SP-D binds the extracellular domains of TLR2 and TLR4 through its CRD by a mechanism different from its binding to PI and LPS.  相似文献   
959.
Although recent studies show that the 14-3-3 protein is a negative regulator of ubiquitin E3 protein ligases, the molecular mechanism remains largely unknown. We previously demonstrated that 14-3-3 specifically binds one of the E3 enzymes, Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2), which can be phosphorylated by serum glucocorticoid-inducible protein kinase 1 (SGK1); this binding protects the phosphorylated/inactive hNedd4-2 from phosphatase-catalyzed dephosphorylation [Ichimura, T., et al. (2005) J. Biol. Chem. 280, 13187-13194]. Here we report an additional mechanism of 14-3-3-mediated regulation of hNedd4-2. Using surface plasmon resonance spectrometry, we show that 14-3-3 inhibits the interaction between the WW domains of hNedd4-2 and the PY motif of the epithelial Na(+) channel, ENaC. The inhibition was dose-dependent and was dependent on SGK1-catalyzed phosphorylation of Ser468 located between the WW domains. Importantly, a mutant of hNedd4-2, which can be phosphorylated by SGK1 but cannot bind 14-3-3, reduced SGK1-mediated stimulation of the ENaC-induced current in Xenopus laevis oocytes. In addition, 14-3-3 had similar effects on hNedd4-2 that had been phosphorylated by cAMP-dependent protein kinase (PKA). Our results, together with the recent finding on 14-3-3/parkin interactions [Sato, S., et al. (2006) EMBO J. 25, 211-221], suggest that 14-3-3 suppresses ubiquitin E3 ligase activities by inhibiting the formation of the enzyme/substrate complex.  相似文献   
960.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号