首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6994篇
  免费   418篇
  国内免费   1篇
  2022年   36篇
  2021年   94篇
  2020年   40篇
  2019年   60篇
  2018年   84篇
  2017年   97篇
  2016年   124篇
  2015年   174篇
  2014年   270篇
  2013年   344篇
  2012年   380篇
  2011年   380篇
  2010年   205篇
  2009年   183篇
  2008年   353篇
  2007年   340篇
  2006年   325篇
  2005年   343篇
  2004年   313篇
  2003年   303篇
  2002年   317篇
  2001年   242篇
  2000年   252篇
  1999年   186篇
  1998年   105篇
  1997年   63篇
  1996年   57篇
  1995年   59篇
  1994年   56篇
  1993年   56篇
  1992年   125篇
  1991年   142篇
  1990年   107篇
  1989年   108篇
  1988年   122篇
  1987年   99篇
  1986年   94篇
  1985年   86篇
  1984年   62篇
  1983年   64篇
  1982年   45篇
  1980年   39篇
  1979年   49篇
  1978年   44篇
  1976年   32篇
  1975年   36篇
  1974年   32篇
  1973年   36篇
  1971年   34篇
  1970年   29篇
排序方式: 共有7413条查询结果,搜索用时 15 毫秒
161.
A cellulase (endo-beta-1,4-glucanase, EC 3.2.1.4) was purified from the gut of larvae of the yellow-spotted longicorn beetle Psacothea hilaris by acetone precipitation and elution from gels after native PAGE and SDS/PAGE with activity staining. The purified protein formed a single band, and the molecular mass was estimated to be 47 kDa. The purified cellulase degraded carboxymethylcellulose (CMC), insoluble cello-oligosaccharide (average degree of polymerization 34) and soluble cello-oligosaccharides longer than cellotriose, but not crystalline cellulose or cellobiose. The specific activity of the cellulase against CMC was 150 micro mol.min-1.(mg protein)-1. TLC analysis showed that the cellulase produces cellotriose and cellobiose from insoluble cello-oligosaccharides. However, a glucose assay linked with glucose oxidase detected a small amount of glucose, with a productivity of 0.072 micro mol.min-1.(mg protein)-1. The optimal pH of P. hilaris cellulase was 5.5, close to the pH in the midgut of P. hilaris larvae. The N-terminal amino-acid sequence of the purified P. hilaris cellulase was determined and a degenerate primer designed, which enabled a 975-bp cDNA clone containing a typical polyadenylation signal to be obtained by PCR and sequencing. The deduced amino-acid sequence of P. hilaris cellulase showed high homology to members of glycosyl hydrolase family 5 subfamily 2, and, in addition, a signature sequence for family 5 was found. Thus, this is the first report of a family 5 cellulase from arthropods.  相似文献   
162.
Production of nitric oxide (NO) in response to bacterial lipopolysaccharide (LPS) was investigated using cultures of mouse peritoneal exudate cells (PEC) and the macrophage cell line RAW264.7. In the presence of anti-(interferon-gamma) (IFN-gamma), NO production was markedly suppressed in the PEC culture but not in the RAW264.7 culture. In the PEC culture, LPS induced both IFN-gamma production and activation of IFN response factor-1, which leads to the gene expression of inducible NO synthase, but neither was induced in the culture of RAW264.7 cells. In addition to anti-(IFN-gamma), antibodies against interleukin (IL)-12 and IL-18 showed a suppressive effect on LPS-induced NO production in the PEC culture, and these antibodies in synergy showed strong suppression. Stimulation of the PEC culture with IL-12 or IL-18 induced production of IFN-gamma and NO, and these cytokines, in combination, exhibited marked synergism. Stimulation of the culture with IFN-gamma induced production of NO, but not IL-12. The macrophage population in the PEC, prepared as adherent cells, responded well to LPS for IL-12 production, but weakly for production of IFN-gamma and NO. The macrophages also responded well to IFN-gamma for NO production. For production of IFN-gamma by stimulation with LPS or IL-12 + IL-18, nonadherent cells were required in the PEC culture. Considering these results overall, the indirect pathway, through the production of intermediates (such as IFN-gamma-inducing cytokines and IFN-gamma) by the cooperation of macrophages with nonadherent cells, was revealed to play the main role in the LPS-induced NO production pathway, as opposed to the direct pathway requiring only a macrophage population.  相似文献   
163.
164.
High-resolution nuclear magnetic resonance (NMR) spectroscopy is a structural technique that is finding increasing use in the study of antibody–antigen interactions. In this review we describe how the dynamic structural parameters obtained from NMR spectroscopy can further our understanding of B-cell epitopes and their function. Specific applications of NMR spectroscopy to examine the residues on peptides and proteins that contact the antibody combining site are also described. These include “footprinting” techniques using H–D exchange–COSY NMR spectroscopy, which are particularly useful for epitope mapping of protein antigens. For smaller systems, such as Fab–or Fv–peptide complexes, nuclear magnetization transfer difference NMR spectroscopy, transferred nuclear Overhauser effect spectroscopy, double-quantum-filtered NOE spectroscopy, and isotope editing techniques have been applied. The interpretation and limitations of the data obtained from these procedures and anticipated improvements in these applications in the future are discussed.  相似文献   
165.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   
166.
167.
Nucleotide sequences for the -casein precursor proteins have been determined from the genomic DNAs or hair roots of the Ruminantia. The coding regions, exons 2, 3, and 4, were amplified separately via the three kinds of PCRs and then directly sequenced. The primers were designed from the sequence of bovine -casein gene; they were applicable for the amplification of the -casein genes from the 13 species in the Ruminantia except exon 2 of the lesser mouse deer. These results permitted an easy phylogenetic analysis based on the sequences of an autosomal gene. A phylogenetic tree was constructed from the mature K-casein sequences and compared with the tree of the cytochrome b genes which were sequenced from the same individuals. The Cervidae (sika deer, Cervus nippon) were separated from the branch of the Bovidae on the tree of -casein genes with a relatively high confidence level of the bootstrap analysis, but included in the branch of the Bovidae on the tree of cytochrome b genes. The -casein tree indicated a monophyly of the subfamily Caprinae, although the internal branches were uncertain in the Caprinae. The tree based on the nucleotide sequences of cytochrome b genes clearly showed the relationships of the closely related species in the genus Capricornis consisting of serow (C. smatorensis), Japanese serow (C. crispus), and Formosan serow (C. swinhoei). These results would be explained by the difference of resolving power between the -casein and the cytochrome b sequences. Correspondence to: K. Chikuni  相似文献   
168.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   
169.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号