首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1246篇
  免费   77篇
  2024年   2篇
  2023年   7篇
  2022年   12篇
  2021年   29篇
  2020年   14篇
  2019年   20篇
  2018年   26篇
  2017年   42篇
  2016年   43篇
  2015年   55篇
  2014年   71篇
  2013年   86篇
  2012年   120篇
  2011年   87篇
  2010年   56篇
  2009年   42篇
  2008年   103篇
  2007年   85篇
  2006年   76篇
  2005年   65篇
  2004年   81篇
  2003年   64篇
  2002年   52篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   4篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1323条查询结果,搜索用时 15 毫秒
111.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   
112.
113.
114.
Three strains TKU9, TKU49 and TKU50T, were isolated from the oral cavities of chimpanzees (Pan troglodytes). The isolates were all gram‐positive, facultative anaerobic cocci that lacked catalase activity. Analysis of partial 16S rRNA gene sequences showed that the most closely related species was Streptococcus infantis (96.7%). The next most closely related species to the isolates were S. rubneri, S. mitis, S. peroris and S. australis (96.6 to 96.4%). Based on the rpoB and gyrB gene sequences, TKU50T was clustered with other member of the mitis group. Enzyme activity and sugar fermentation patterns differentiated this novel bacterium from other members of the mitis group streptococci. The DNA G + C content of strain TKU50T was 46.7 mol%, which is the highest reported value for members of the mitis group (40–46 mol%). On the basis of the phenotypic characterization, partial 16S rRNA gene and sequences data for two housekeeping gene (gyrB and rpoB), we propose a novel taxa, S. panodentis for TKU 50T (type strain = CM 30579T = DSM 29921T), for these newly described isolates.  相似文献   
115.
116.
117.
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   
118.
Many toxicology studies have elucidated health effects associated with exposure to various chemicals, but few have identified the molecular targets that cause specific endpoints of toxicity. Our understanding of the toxicity of dioxins, a group of chemicals capable of causing toxicity at environmentally relevant levels of exposure, is no exception. Dioxins are unique compared to most chemicals that we are exposed to in the environment because they activate a high affinity receptor, aryl hydrocarbon receptor (AhR), that was identified more than three decades ago. In recent years, several lines of experimental evidence have provided clues for opening the "black box" that contains the molecular mechanisms of dioxin action. These clues have emerged by toxicologists beginning to identify the molecular targets that link AhR signaling to tissue-specific toxicity phenotypes. Endpoints of dioxin toxicity for which downstream molecular targets have begun to be elucidated are observed in developmental or tissue regeneration processes, and include impaired prostate development and hydronephrosis in mouse fetuses and pups, reduced midbrain blood flow and jaw malformation in zebrafish embryos, and impaired fin regeneration in larval and adult zebrafish. Significant progress in identifying molecular targets for dioxin-induced hepatotoxicity in adult mice also has occurred. Misregulation of AhR downstream pathways, such as conversion of arachidonic acid to prostanoids via cyclooxygenase-2, and altered Wnt/β-catenin signaling downregulating Sox9, and signaling by receptors for inflammatory cytokines have been implicated in tissue-specific endpoints of dioxin toxicity. These findings may not only begin to clarify the molecular targets of dioxin action but shed light on new molecular events associated with development and disease.  相似文献   
119.
In the fission yeast Schizosaccharomyces pombe, galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases in the lumen of the Golgi apparatus. In S. pombe, the major in vitro α1,2-galactosyltransferase activity has been purified, the gma12(+) gene has been cloned, and three α-galactosyltransferase genes (gmh1(+)-gmh3(+)) have also been partially characterized. In this study, we found three additional uncharacterized genes with homology to gmh1(+) (gmh4(+)-gmh6(+)) in the fission yeast genome sequence. All possible single disruption mutants and the septuple disruption strain were constructed and characterized. The electrophoretic mobility of acid phosphatase prepared from gma12Δ, gmh2Δ, gmh3Δ and gmh6Δ mutants was higher than that from wild type, indicating that Gma12p, Gmh2p, Gmh3p and Gmh6p are required for the galactosylation of N-linked oligosaccharides. High-performance liquid chromatography (HPLC) analysis of pyridylaminated O-linked oligosaccharides from each single mutant showed that Gma12p, Gmh2p and Gmh6p are involved in galactosylation of O-linked oligosaccharides. The septuple mutant exhibited similar drug and temperature sensitivity as a gms1Δ mutant that is incapable of galactosylation. Oligosaccharide structural analysis based on HPLC and methylation analysis revealed that the septuple mutant still contained oligosaccharides consisting of α1,3-linked Gal residues, indicating that an unknown α1,3-galactosyltransferase activity was still present in the septuple mutant.  相似文献   
120.
Cellobiose 2-epimerase (CE) reversibly converts glucose residue to mannose residue at the reducing end of β-1,4-linked oligosaccharides. It efficiently produces epilactose carrying prebiotic properties from lactose, but the utilization of known CEs is limited due to thermolability. We focused on thermoholophilic Rhodothermus marinus JCM9785 as a CE producer, since a CE-like gene was found in the genome of R. marinus DSM4252. CE activity was detected in the cell extract of R. marinus JCM9785. The deduced amino acid sequence of the CE gene from R. marinus JCM9785 (RmCE) was 94.2% identical to that from R. marinus DSM4252. The N-terminal amino acid sequence and tryptic peptide masses of the native enzyme matched those of RmCE. The recombinant RmCE was most active at 80 °C at pH 6.3, and stable in a range of pH 3.2-10.8 and below 80 °C. In contrast to other CEs, RmCE demonstrated higher preference for lactose over cellobiose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号