首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   9篇
  国内免费   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   7篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1980年   1篇
  1957年   1篇
  1956年   1篇
  1953年   1篇
  1936年   1篇
  1930年   1篇
  1927年   3篇
  1925年   1篇
  1913年   1篇
  1912年   1篇
排序方式: 共有113条查询结果,搜索用时 46 毫秒
91.
92.
93.
Editorial     
Nick P 《Protoplasma》2012,249(1):1-2
  相似文献   
94.
95.
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.  相似文献   
96.
Elongation of diffusely expanding plant cells is thought to be mainly under the control of cortical microtubules. Drug treatments that disrupt actin microfilaments, however, can reduce elongation and induce radial swelling. To understand how microfilaments assist growth anisotropy, we explored their functional interactions with microtubules by measuring how microtubule disruption affects the sensitivity of cells to microfilament-targeted drugs. We assessed the sensitivity to actin-targeted drugs by measuring the lengths and diameters of expanding roots and by analysing microtubule and microfilament patterns in the temperature-sensitive Arabidopsis thaliana mutant microtubule organization 1 (mor1-1), along with other mutants that constitutively alter microtubule arrays. At the restrictive temperature of mor1-1, root expansion was hypersensitive to the microfilament-disrupting drugs latrunculin B and cytochalasin D, while immunofluorescence microscopy showed that low doses of latrunculin B exacerbated microtubule disruption. Root expansion studies also showed that the botero and spiral1 mutants were hypersensitive to latrunculin B. Hypersensitivity to actin-targeted drugs is a direct consequence of altered microtubule polymer status, demonstrating that cross-talk between microfilaments and microtubules is critical for regulating anisotropic cell expansion.  相似文献   
97.
Immunofluorescence staining with antibodies to tubulin, neurofilaments and glial filaments was used to study the effects of methylmercury on the differentiation of retinoic acid-induced embryonal carcinoma cells into neurons and astroglia and on the cytoskeleton of these neuroectodermal derivatives. Methylmercury did not prevent undifferentiated embryonal carcinoma cells from developing into neurons and glia. Treatment of committed embryonal carcinoma cells with methylmercury doses exceeding 1 M resulted in the formation of neurons with abnormal morphologies. In differentiated cultures, microtubules were the first cytoskeletal element to be affected. Their disassembly was time- and concentration-dependent. Microtubules in glial cells and in neuronal perikarya were more sensitive than those in neuronal processes. Neurofilaments and glial filaments appeared relatively insensitive to methylmercury treatment but showed reorganization after complete disassembly of the microtubules. The data demonstrate 1) the sensitivity of microtubules of both neurons and glia to methylmercury-induced depolymerization, and 2) the heterogeneous response of neuronalAbbreviations -MEM alpha minimal essential medium - EC embryonal carcinoma cells - FCS fetal calf serum - MAP microtubule-associated protein - MeHg methylmercury - RA retinoic acid  相似文献   
98.
1. Most of the products of the peptic hydrolysis of albumin, about 85 per cent of the total N, are primary in the sense that they arise directly from the protein molecule, and undergo no further hydrolysis. 2. A slow secondary hydrolysis, involving about 15 per cent of the total N, occurs in the proteose and simpler fractions primarily split off. 3. Acid metaprotein in peptic hydrolysis arises as a result of the action of acid. It is not an essential stage in the hydrolysis of undenatured albumin. 4. Acid metaprotein is hydrolyzed by pepsin more slowly under comparable conditions than undenatured albumin.  相似文献   
99.
The anisotropic growth of plant cells depends on cell walls having anisotropic mechanical properties, which are hypothesized to arise from aligned cellulose microfibrils. To test this hypothesis and to identify genes involved in controlling plant shape, we isolated mutants in Arabidopsis thaliana in which the degree of anisotropic expansion of the root is reduced. We report here the characterization of mutants at two new loci, RADIALLY SWOLLEN 4 (RSW4) and RSW7. The radial swelling phenotype is temperature sensitive, being moderate (rsw7) or negligible (rsw4) at the permissive temperature, 19 degrees C, and pronounced at the restrictive temperature, 30 degrees C. After transfer to 30 degrees C, the primary root's elongation rate decreases and diameter increases, with all tissues swelling radially. Swelling is accompanied by ectopic cell production but swelling is not reduced when the extra cell production is eliminated chemically. A double mutant was generated, whose roots swell constitutively and more than either parent. Based on analytical determination of acid-insoluble glucose, the amount of cellulose was normal in rsw4 and slightly elevated in rsw7. The orientation of cortical microtubules was examined with immunofluorescence in whole mounts and in semi-thin plastic sections, and the orientation of microfibrils was examined with field-emission scanning electron microscopy and quantitative polarized-light microscopy. In the swollen regions of both mutants, cortical microtubules and cellulose microfibrils are neither depleted nor disoriented. Thus, oriented microtubules and microfibrils themselves are insufficient to limit radial expansion; to build a wall with high mechanical anisotropy, additional factors are required, supplied in part by RSW4 and RSW7.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号