首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   11篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   12篇
  2014年   9篇
  2013年   10篇
  2012年   11篇
  2011年   14篇
  2010年   10篇
  2009年   9篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  1997年   1篇
排序方式: 共有128条查询结果,搜索用时 171 毫秒
81.
The Notch signaling pathway has been recently shown to contribute to T cell differentiation in vitro. However, the in vivo function of Notch signaling in transplantation remains unknown. In this study, we investigated the importance of Delta1 in regulating the alloimmune response in vivo. Delta1 expression was upregulated on dendritic cells and monocytes/macrophages upon transplantation in a BALB/c into B6 vascularized cardiac transplant model. Whereas administration of anti-Delta1 mAb only slightly delayed survival of cardiac allografts in this fully MHC-mismatched model, it significantly prolonged graft survival in combination with single-dose CTLA4-Ig or in CD28 knockout recipients. The prolongation of allograft survival was associated with Th2 polarization and a decrease in Th1 and granzyme B-producing cytotoxic T cells. The survival benefit of Delta1 blockade was abrogated after IL-4 neutralization and in STAT6KO recipients, but was maintained in STAT4KO recipients, reinforcing the key role of Th2 cell development in its graft-prolonging effects. To our knowledge, these data demonstrate for the first time an important role of Delta1 in alloimmunity, identifying Delta1 ligand as a potential novel target for immunomodulation in transplantation.  相似文献   
82.
The effects of continuous light exposure (24L:0D) and a 12 h:12 h light/dark regime (12L:12D) were compared on the growth and carotenoid, protein, sugar, lipid, and fatty acid contents in Chlorella vulgaris, Nannochloropsis sp., Isochrysis galbana, and Dunaliella salina cultured in a batchwise facility. These microalgae were grown axenically under a low photon flux density (PFD) of 27 μmol photons m?2 s?1. C. vulgaris, Nannochloropsis sp., and I. galbana exhibited the highest cell densities when cultured under 24L:0D, whereas D. salina grew better under the alternating light/dark regime. I. galbana accumulated high levels of proteins, sugars, and lipids and exhibited the highest carotenoid content under 24L:0D. Protein production was enhanced in C. vulgaris under 24L:0D. The highest total lipid content was recorded for D. salina, reaching 74.6 % of total proteins, sugars, and lipids in cells at the stationary phase when grown under 12L:12D. The light/dark regime at low PFD was sufficient to stimulate the accumulation of monounsaturated and polyunsaturated fatty acids in all four algae. Their levels, like those of saturated fatty acids, did not differ significantly under the two light regimes. D. salina was an important source of tetradecenoic acid 14:1(n-5). Nannochloropsis sp. produced a large amount of the essential eicosapentaenoic acid, which reached 20 % of total fatty acids under 12L:12D, while I. galbana exhibited the highest level of docosahexaenoic acid, which reached 21 % under both light regimes. This study demonstrated the feasibility of culturing microalgae under low PFD in order to produce large quantities of valuable metabolites, especially various lipids with neutraceutical value.  相似文献   
83.
Cancer stem cells (CSCs), including those of advanced prostate cancer, are a suggested reason for tumor resistance toward conventional tumor therapy. Therefore, new therapeutic agents are urgently needed for targeting CSCs. Despite the minimal understanding of their modes of action, natural products and herbal therapies have been commonly used in the prevention and treatment of many cancers. Berberis libanotica Ehrenb (BLE) is a plant rich in alkaloids which may possess anti-cancer activity and a high potential for eliminating CSCs. We tested the effect of BLE on prostate cancer cells and our data indicated that this extract induced significant reduction in cell viability and inhibited the proliferation of human prostate cancer cell lines (DU145, PC3 and 22Rv1) in a dose- and time-dependent manner. BLE extract induced a perturbation of the cell cycle, leading to a G0-G1 arrest. Furthermore, we noted 50% cell death, characterized by the production of high levels of reactive oxidative species (ROS). Inhibition of cellular migration and invasion was also achieved upon treatment with BLE extract, suggesting a role in inhibiting metastasis. Interestingly, BLE extract had a major effect on CSCs. Cells were grown in a 3D sphere-formation assay to enrich for a population of cancer stem/progenitor cells. Our results showed a significant reduction in sphere formation ability. Three rounds of treatment with BLE extract were sufficient to eradicate the self-renewal ability of highly resistant CSCs. In conclusion, our results suggest a high therapeutic potential of BLE extract in targeting prostate cancer and its CSCs.  相似文献   
84.
The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.  相似文献   
85.
86.
Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet little is known regarding the importance of actin polymerization and other myosins for the remaining steps of the parasite lytic cycle. Here we establish that T. gondii formin 3 (TgFRM3), a newly described formin homology 2 domain (FH2)-containing protein, binds to Toxoplasma actin and nucleates rabbit actin assembly in vitro. TgFRM3 expressed as a transgene exhibits a patchy localization at several distinct structures within the parasite. Disruption of the TgFRM3 gene by double homologous recombination in a ku80-ko strain reveals no vital function for tachyzoite propagation in vitro, which is consistent with its weak level of expression in this life stage. Conditional stabilization of truncated forms of TgFRM3 suggests that different regions of the molecule contribute to distinct localizations. Moreover, expression of TgFRM3 lacking the C-terminal domain severely affects parasite growth and replication. This work provides a first insight into how this specialized formin, restricted to the group of coccidia, completes its actin-nucleating activity.  相似文献   
87.

Introduction

Common variable immunodeficiency disorder (CVID) is a heterogeneous syndrome, characterized by deficient antibody production and recurrent bacterial infections in addition abnormalities in T cells. CD4+CD25high regulatory T cells (Treg) are essential modulators of immune responses, including down-modulation of immune response to pathogens, allergens, cancer cells and self-antigens.

Objective

In this study we set out to investigate the frequency of Treg cells in CVID patients and correlate with their immune activation status.

Materials and Methods

Sixteen patients (6 males and 10 females) with CVID who had been treated with regular intravenous immunoglobulin and 14 controls were enrolled. Quantitative analyses of peripheral blood mononuclear cells (PBMC) were performed by multiparametric flow cytometry using the following cell markers: CD38, HLA-DR, CCR5 (immune activation); CD4, CD25, FOXP3, CD127, and OX40 (Treg cells); Ki-67 and IFN-γ (intracellular cytokine).

Results

A significantly lower proportion of CD4+CD25highFOXP3 T cells was observed in CVID patients compared with healthy controls (P<0.05). In addition to a higher proportion of CD8+ T cells from CVID patients expressing the activation markers, CD38+ and HLA-DR+ (P<0.05), we observed no significant correlation between Tregs and immune activation.

Conclusion

Our results demonstrate that a reduction in Treg cells could have impaired immune function in CVID patients.  相似文献   
88.
Emerging evidence suggests a cardioprotective role of the angiotensin AT2R, albeit the underlying cellular mechanisms are not well understood. We aimed in this article to elucidate a potential role of cardiac angiotensin AT2R in regulating cellular immune response to ischemic heart injury. Seven days after myocardial infarction in rats, double-immunofluorescence staining showed that AT2R was detected in a fraction of CD8(+) T cells infiltrating in the peri-infarct myocardium. We developed a method that allowed the isolation of myocardial infiltrating CD8(+)AT2R(+) T cells using modified MACS, and further characterization and purification with flow cytometry. Although the CD8(+)AT2R(-) T cells exhibited potent cytotoxicity to both adult and fetal cardiomyocytes (CMs), the CD8(+)AT2R(+) T cells were noncytotoxic to these CMs. The CD8(+)AT2R(+) T cells were characterized by upregulated IL-10 and downregulated IL-2 and INF-γ expression when compared with CD8(+)AT2R(-) T cells. We further showed that IL-10 gene expression was enhanced in CD8(+) T cells on in vitro AT2R stimulation. Importantly, in vivo AT2R activation engendered an increment of CD8(+)AT2R(+) T cells and IL-10 production in the ischemic myocardium. In addition, intramyocardial transplantation of CD8(+)AT2R(+) T cells (versus CD8(+)AT2R(-)) led to reduced ischemic heart injury. Moreover, the CD8(+)AT2R(+) T cell population was also demonstrated in human peripheral blood. Thus, we have defined the cardioprotective CD8(+)AT2R(+) T cell population, which increases during ischemic heart injury and contributes to maintaining CM viability and providing IL-10, hence revealing an AT2R-mediated cellular mechanism in modulating adaptive immune response in the heart.  相似文献   
89.

Background

Many inducible plant-defense responses are activated by jasmonates (JAs), C6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids.

Principal Findings

This study conclusively establishes that jasmonates and C6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant-herbivore-natural enemy) interactions.

Significance

The data suggest that jasmonates and hexenyl acetate play distinct roles in mediating direct and indirect plant-defense responses. The potential advantage of this “division of labor” is to ensure the most effective defense strategy that minimizes incurred damages at a reduced metabolic cost.  相似文献   
90.
The growth rate of the ciliate Fabrea salina was studied in batch cultures in the presence of three feeds, tested separately from each other: the Prymnesiophyceae, Isochrysis galbana obtained from pure culture, the Chlorophyceae Dunaliella salina, and the commercially available yeast Saccharomyces cerevisiae. F. salina, and D. salina were harvested below the surface from the first evaporation pond and the crystallizer pond, respectively in multi-pond salterns (Sfax, Tunisia). The highest density of Fabrea was recorded with I. galbana (26 ind ml(-1)). However, the greatest length (243 microm) was recorded with Fabrea fed with D. salina. The lowest density, length and biovolume values were recorded with Fabrea fed with S. cerevisiae. The ANOVA test showed that density (F=18, d.f.=57), length (F=33, d.f.=57), and biovolume (F=19, d.f.=57) of Fabrea fed with yeast were significantly different (p<0.001) from those when Fabrea was fed with D. salina and I. galbana. The ciliate Fabrea encountered in the Sfax saltern (Tunisia) might be a valuable food source for Tunisian marine fish hatcheries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号