首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1784篇
  免费   155篇
  国内免费   1篇
  2023年   5篇
  2022年   13篇
  2021年   23篇
  2020年   16篇
  2019年   28篇
  2018年   25篇
  2017年   28篇
  2016年   55篇
  2015年   80篇
  2014年   96篇
  2013年   116篇
  2012年   147篇
  2011年   154篇
  2010年   83篇
  2009年   72篇
  2008年   101篇
  2007年   96篇
  2006年   88篇
  2005年   120篇
  2004年   74篇
  2003年   115篇
  2002年   92篇
  2001年   25篇
  2000年   16篇
  1999年   21篇
  1998年   18篇
  1997年   21篇
  1996年   19篇
  1995年   17篇
  1994年   10篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   4篇
  1989年   11篇
  1988年   11篇
  1986年   8篇
  1985年   6篇
  1982年   6篇
  1980年   4篇
  1977年   3篇
  1975年   7篇
  1974年   3篇
  1973年   12篇
  1972年   7篇
  1971年   5篇
  1970年   5篇
  1967年   5篇
  1966年   4篇
  1958年   3篇
排序方式: 共有1940条查询结果,搜索用时 46 毫秒
21.
The chemical and kinetic mechanisms of purified aspartate-beta-semialdehyde dehydrogenase from Escherichia coli have been determined. The kinetic mechanism of the enzyme, determined from initial velocity, product and dead end inhibition studies, is a random preferred order sequential mechanism. For the reaction examined in the phosphorylating direction L-aspartate-beta-semialdehyde binds preferentially to the E-NADP-Pi complex, and there is random release of the products L-beta-aspartyl phosphate and NADPH. Substrate inhibition is displayed by both Pi and NADP. Inhibition patterns versus the other substrates suggest that Pi inhibits by binding to the phosphate subsite in the NADP binding site, and the substrate inhibition by NADP results from the formation of a dead end E-beta-aspartyl phosphate-NADP complex. The chemical mechanism of the enzyme has been examined by pH profile and chemical modification studies. The proposed mechanism involves the attack of an active site cysteine sulfhydryl on the carbonyl carbon of aspartate-beta-semialdehyde, with general acid assistance by an enzyme lysine amino group. The resulting thiohemiacetal is oxidized by NADP to a thioester, with subsequent attack by the dianion of enzyme bound phosphate. The collapse of the resulting tetrahedral intermediate leads to the acyl-phosphate product and liberation of the active site cysteine.  相似文献   
22.
The formation of a microbial biofilm on glass surfaces arranged in lamellar piles parallel with circulating sea water (3 cm·sec–1) was studied. The increase in dry weight, protein content, nucleotide content (ATP, ADP), and diatoms was followed over a period of 62 days. Dry weight and protein were estimates of the total biofilm development, whereas the nucleotide measurements revealed the viability of the biofilm and reflected the dynamics in the community structure.  相似文献   
23.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   
24.
A variety of azobenzene compounds having bis-quaternary nitrogens have been shown to accelerate the hydrolysis by chymotrypsin of certain specific substrates by an allosteric mechanism. One of the most potent, 2,2'-bis[alpha-(benzyldimethylammonium)methyl]azobenzene dibromide (2,2'-QBzl) accelerated the hydrolysis of glutaryl-L-phenylalanine p-nitroanilide 40-fold at saturating concentration. Acceleration was by increasing kcat without altering Km. The hydrolysis of acetyl-L-tyrosine p-nitroanilide and acetyl-L-tyrosine anilide was also accelerated by Q-Bzl (25-fold and 1.8-fold respectively) while the hydrolysis of hemoglobin, azocoll and a number of esters was not affected. The inactivation of chymotrypsin by diphenylcarbamyl chloride and diphenylcarbamyl fluoride was accelerated by 2,2'-Q-Bzl. Reac;ivation in the presence of NH2OH was also accelerated, but in the absence of added nucleophile (i.e. of NH20H) no increase in rate was detectable. An allosteric effector was covalently attached to chymotrypsinogen A by reaction with 2,2'-bis[alpha-(o-bromomethylbenzyldimethylammonium)methyl]azobenezene dibromide. The product, when converted to active enzyme, was about 4 times more active than chymotrypsin as a result of an increase in kcat of hydrolysis; Km was unaffected. The mechanism of the allosteric acceleration process is not known but, because for all of the substrates affected acylation of the enzyme is rate-limitimg, it is tentatively suggested that the effectors facilitate proton transfer to the leaving group by an inductive effect on the 'charge relay system'. Spectral studies indicate that the allosteric site is a portion of the enzyme with a polarity near that of water, possibly on the outside surface of the enzyme molecule.  相似文献   
25.
26.
27.
The comparative growth and osmotic acclimation often culture strains of the marine benthic cyanobacterium Microcoleus chthonoplastes Thuret isolated from microbial mats in Germany, Spain, Egypt, the United States, Mexico, Chile, and Australia were investigated in salinities ranging from freshwater to twice seawater. All isolates showed a broad growth versus salinity response consistent with the dominance of this species in intertidal and hypersaline microbial communities. Growth optima, salinity preferences, and maximum growth rates differed for each isolate and could be related to the habitat from which they were isolated. This is most obvious when comparing strains from brackish habitats with those from a hypersaline lake. While the former isolates exhibited sharply pronounced growth optima under hyposaline conditions, cultures from the hypersaline environment grew best in salinity more than double seawater. The major low-molecular weight organic compounds present in all M. chthonoplastes strains were the carbohydrates glycosylglycerol and trehalose. This was proven by using 13C-nuclear magnetic resonance spectroscopy. Glycosylglycerol was synthesized and accumulated with increasing salinities, indicating its role as an osmolyte. In contrast, trehalose was present in relatively high concentrations under hyposaline conditions only. Differences in the patterns of growth versus salinity, as well as in those of osmotic acclimation among the M. chthonoplastes isolates, point to the development of different physiological ecotypes within the species.  相似文献   
28.
The Atacama Desert is the driest non‐polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit‐sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio‐weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non‐polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.  相似文献   
29.
30.
Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption. The Qtag is attached to the peptide during synthesis and is removed by tryptic digestion under standard proteomics workflow conditions. While one quantification method (method A) is designed to allow the fast and economic production of absolutely quantified SIL peptides, two other methods (methods B and C) are developed to enable the straightforward re‐quantification of SIL peptides after reconstitution to control and monitor known problems related to peptide solubility, precipitation, and adhesion to vials. All methods yield consistent results when compared to each other and when compared to quantification by amino acid analysis. The precise quantitation methods are used to characterize the in vivo specificity of the H3 specific histone methyltransferase EZH2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号