首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3937篇
  免费   450篇
  国内免费   6篇
  2021年   42篇
  2020年   30篇
  2019年   48篇
  2018年   45篇
  2017年   47篇
  2016年   82篇
  2015年   132篇
  2014年   138篇
  2013年   163篇
  2012年   185篇
  2011年   201篇
  2010年   139篇
  2009年   98篇
  2008年   189篇
  2007年   184篇
  2006年   172篇
  2005年   175篇
  2004年   154篇
  2003年   141篇
  2002年   164篇
  2001年   76篇
  2000年   93篇
  1999年   77篇
  1998年   53篇
  1997年   46篇
  1996年   43篇
  1995年   38篇
  1994年   37篇
  1993年   34篇
  1992年   81篇
  1991年   62篇
  1990年   54篇
  1989年   62篇
  1988年   60篇
  1987年   47篇
  1986年   42篇
  1985年   51篇
  1984年   52篇
  1983年   36篇
  1982年   39篇
  1980年   35篇
  1979年   56篇
  1978年   44篇
  1977年   44篇
  1976年   34篇
  1975年   38篇
  1974年   67篇
  1973年   42篇
  1971年   40篇
  1970年   32篇
排序方式: 共有4393条查询结果,搜索用时 15 毫秒
191.
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and physiological mechanism are needed to convincingly establish climate‐induced species shifts. We examine a 38‐year shift (1974–2012) in an elevation ecotone between two closely related ant species, Aphaenogaster picea and A. rudis. Even though A. picea and A. rudis are closely related with North American distributions that sometimes overlap, they also exhibit local‐ and regional‐scale differences in temperature requirements so that A. rudis is more southerly and inhabits lower elevations whereas A. picea is more northerly and inhabits high elevations. We find considerable movement by the warm‐habitat species upward in elevation between 1974 and 2012 with A. rudis, replacing the cold‐habitat species, A. picea, along the southern edge of the Appalachian Mountain chain in north Georgia, USA. Concomitant with the distribution shifts, regional mean and maximum temperatures remain steady (1974–2012), but minimum temperatures increase. We collect individuals from the study sites and subject them to thermal tolerance testing in a controlled setting and find that maximum and minimum temperature acclimatization occurs along the elevation gradient in both species, but A. rudis consistently becomes physiologically incapacitated at minimum and maximum temperatures 2 °C higher than A. picea. These results indicate that rising minimum temperatures allow A. rudis to move upward in elevation and displace A. picea. Given that Aphaenogaster ants are the dominant woodland seed dispersers in eastern deciduous forests, and that their thermal tolerances drive distinct differences in temperature‐cued synchrony with early blooming plants, these climate responses not only impact ant‐ant interactions, but might have wide implications for ant‐plant interactions.  相似文献   
192.
193.
Reducing activity of the mTORC1/S6K1 pathway has been shown to extend lifespan in both vertebrate and invertebrate models. For instance, both pharmacological inhibition of mTORC1 with the drug rapamycin or S6K1 knockout extends lifespan in mice. Since studies with invertebrate models suggest that reducing translational activity can increase lifespan, we reasoned that the benefits of decreased mTORC1 or S6K1 activity might be due, at least in part, to a reduction of general translational activity. Here, we report that mice given a single dose of rapamycin have reduced translational activity, while mice receiving multiple injections of rapamycin over 4 weeks show no difference in translational activity compared with vehicle-injected controls. Furthermore, mice lacking S6K1 have no difference in global translational activity compared with wild-type littermates as measured by the percentage of ribosomes that are active in multiple tissues. Translational activity is reduced in S6K1-knockout mice following single injection of rapamycin, demonstrating that rapamycin’s effects on translation can occur independently of S6K1. Taken together, these data suggest that benefits of chronic rapamycin treatment or lack of S6K1 are dissociable from potential benefits of reduced translational activity, instead pointing to a model whereby changes in translation of specific subsets of mRNAs and/or translation-independent effects of reduced mTOR signaling underlie the longevity benefits.  相似文献   
194.
Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2°C in 1 m2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.  相似文献   
195.
196.
Highlights? miR-34a regulates colon cancer stem cell asymmetric division ? miR-34a generates a sharp threshold response ? miR-34a converts Notch signaling into a toggle switch ? Binary Notch levels specify self-renewal versus differentiation  相似文献   
197.
198.

Rationale

Deterioration of ventricular fibrillation (VF) into asystole or severe bradycardia (electrical failure) heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown.

Objective

To determine metabolic factors of early electrical failure in an Ex-vivo canine model of cardiac arrest (VF+global ischemia).

Methods and Results

Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys), while 5/9 hearts maintained VF for at least 19.7 min (late-asys). As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05). Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi) than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ) during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05).

Conclusions

High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.  相似文献   
199.
Tuberculosis (TB) is responsible for death of nearly two million people in the world annually. Upon infection, Mycobacterium tuberculosis (Mtb) causes formation of granuloma where the pathogen goes into dormant state and can live for decades before resuscitation to develop active disease when the immune system of the host is weakened and/or suppressed. In an attempt to better understand host-pathogen interactions, several groups have been developing in vitro models of human tuberculosis granuloma. However, to date, an in vitro granuloma model in which Mtb goes into dormancy and can subsequently resuscitate under conditions that mimic weakening of the immune system has not been reported. We describe the development of a biomimetic in vitro model of human tuberculosis granuloma using human primary leukocytes, in which the Mtb exhibited characteristics of dormant mycobacteria as demonstrated by (1) loss of acid-fastness, (2) accumulation of lipid bodies (3) development of rifampicin-tolerance and (4) gene expression changes. Further, when these micro granulomas were treated with immunosuppressant anti-tumor necrosis factor-alpha monoclonal antibodies (anti-TNFα mAbs), resuscitation of Mtb was observed as has been found in humans. In this human in vitro granuloma model triacylglycerol synthase 1deletion mutant (Δtgs1) with impaired ability to accumulate triacylglycerides (TG), but not the complemented mutant, could not go into dormancy. Deletion mutant of lipY, with compromised ability to mobilize the stored TG, but not the complemented mutant, was unable to come out of dormancy upon treatment with anti-TNFα mAbs. In conclusion, we have developed an in vitro human tuberculosis granuloma model that largely exhibits functional features of dormancy and resuscitation observed in human tuberculosis.  相似文献   
200.
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号