首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   49篇
  国内免费   1篇
  2021年   3篇
  2020年   5篇
  2019年   13篇
  2018年   9篇
  2016年   4篇
  2015年   7篇
  2014年   12篇
  2013年   21篇
  2012年   16篇
  2011年   22篇
  2010年   14篇
  2009年   8篇
  2008年   17篇
  2007年   24篇
  2006年   10篇
  2005年   10篇
  2004年   16篇
  2003年   14篇
  2002年   8篇
  2001年   13篇
  2000年   18篇
  1999年   7篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   7篇
  1975年   2篇
  1974年   3篇
  1973年   7篇
  1972年   4篇
  1967年   5篇
  1930年   2篇
排序方式: 共有432条查询结果,搜索用时 46 毫秒
41.
A conventional extraction technique of sonication has been compared, in terms of extraction efficiency, extraction time and amount of solvent, with the more novel technique of accelerated solvent extraction for the extraction of kavain from the powdered roots of Piper methysticum (Kava) with acetone. The extracts were analysed using high-performance liquid chromatography with ultra violet detection. The effects of varying solvent volume and extraction time upon the quantity of kavain extracted with sonication, and the effects of varying temperature upon the kavain extraction efficiency by ASE, were investigated. ASE was found to be more efficient with respect to time and solvent volume required; however, a good agreement was found between the kavain concentration obtained using both extraction techniques.  相似文献   
42.
43.

Background  

Mammalian centromere formation is dependent on chromatin that contains centromere protein (CENP)-A, which is the centromere-specific histone H3 variant. Human neocentromeres have acquired CENP-A chromatin epigenetically in ectopic chromosomal locations on low-copy complex DNA. Neocentromeres permit detailed investigation of centromeric chromatin organization that is not possible in the highly repetitive alpha satellite DNA present at endogenous centromeres.  相似文献   
44.
A small supernumerary marker chromosome (SMC) was observed in a girl with severe developmental delay. Her dysmorphism included prominent forehead, hypertelorism, down-slanting palpebral fissures, low-set/large ears, and flat nasal bridge with anteverted nares. This case also presented hypotonia, hypermobility of joints, congenital heart defect, umbilical hernia, failure to thrive, and seizures. The SMC originated from the distal region of Xp as identified by FISH with multiple DNA probes. Staining with antibodies to Centromere Protein C (CENP-C) demonstrated a neocentromere, while FISH with an alpha-satellite DNA probe showed no hybridization to the SMC. A karyotype was described as 47,XX,+neo(X)(pter-->p22.31::p22.31-->pter), indicating a partial tetrasomy of Xp22.31-->pter. This karyotype represents a functional trisomy for Xp22.31-->pter and a functional tetrasomy for the pseudoautosomal region given that there is no X-inactivation center in the marker chromosome. The SMC was further characterized by microarray-based comparative genomic hybridization (array CGH) as a duplicated DNA fragment of approximately 13 megabase pairs containing about 100 genes. We have described here a new neocentromere with discussion of its clinical significance.  相似文献   
45.
Patterson  M.  Wolfe  A. K.  Fleming  P. A.  Bateman  P. W.  Martin  M. L.  Sherratt  E.  Warburton  N. M. 《Evolutionary ecology》2022,36(4):489-509
Evolutionary Ecology - As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey...  相似文献   
46.
The present study investigated the effect of unilateral and bilateral resistance exercise (RE) on maximal voluntary strength, total volume of load lifted (TVLL), rating of perceived exertion (RPE) and blood lactate concentration of resistance-trained males. Twelve healthy men were assessed for the leg extension one-repetition maximum (1RM) strength using bilateral and unilateral contractions. Following this assessment, an RE session (3 sets of repetitions to failure) was conducted with bilateral and unilateral (both limbs) contractions using a load of 50% 1RM. The TVLL was calculated by the product of the number of repetitions and the load lifted per repetition. RPE and blood lactate were measured before, during and after each set. Session RPE was measured 30 minutes after RE sessions. There was a significant difference in the bilateral (120.0±11.9) and unilateral (135.0±20.2 kg) 1RM strength (p < 0.05). The TVLL was similar between both RE sessions. Although the repetitions decreased with each successive set, the total number of repetitions completed in the bilateral protocol (48) was superior to the unilateral (40) protocol (p < 0.05). In both bouts, RPE increased with each subsequent set whilst blood lactate increased after set 1 and thereafter remained stable (p < 0.05). The RPE and lactate responses were not significantly different between both sessions. In conclusion, a bilateral deficit in leg extension strength was confirmed, but the TVLL was similar between both RE sessions when exercising to voluntary fatigue. This outcome could be attributed to the number of repetitions completed in the unilateral RE bout. The equal TVLL would also explain the similar perceptual and metabolic responses across each RE session.  相似文献   
47.

Background

Aflatoxin is a potent carcinogen that can contaminate grain infected with the fungus Aspergillus flavus. However, resistance to aflatoxin accumulation in maize is a complex trait with low heritability. Here, two complementary analyses were performed to better understand the mechanisms involved. The first coupled results of a genome-wide association study (GWAS) that accounted for linkage disequilibrium among single nucleotide polymorphisms (SNPs) with gene-set enrichment for a pathway-based approach. The rationale was that the cumulative effects of genes in a pathway would give insight into genetic differences that distinguish resistant from susceptible lines of maize. The second involved finding non-pathway genes close to the most significant SNP-trait associations with the greatest effect on reducing aflatoxin in multiple environments. Unlike conventional GWAS, the latter analysis emphasized multiple aspects of SNP-trait associations rather than just significance and was performed because of the high genotype x environment variability exhibited by this trait.

Results

The most significant metabolic pathway identified was jasmonic acid (JA) biosynthesis. Specifically, there was at least one allelic variant for each step in the JA biosynthesis pathway that conferred an incremental decrease to the level of aflatoxin observed among the inbred lines in the GWAS panel. Several non-pathway genes were also consistently associated with lowered aflatoxin levels. Those with predicted functions related to defense were: leucine-rich repeat protein kinase, expansin B3, reversion-to-ethylene sensitivity1, adaptor protein complex2, and a multidrug and toxic compound extrusion protein.

Conclusions

Our genetic analysis provided strong evidence for several genes that were associated with aflatoxin resistance. Inbred lines that exhibited lower levels of aflatoxin accumulation tended to share similar haplotypes for genes specifically in the pathway of JA biosynthesis, along with several non-pathway genes with putative defense-related functions. Knowledge gained from these two complementary analyses has improved our understanding of population differences in aflatoxin resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1874-9) contains supplementary material, which is available to authorized users.  相似文献   
48.
Blood vessels have been shown to play perfusion-independent roles in organogenesis. Here, we examined whether blood vessels determine branching stereotypy of the mouse lung airways in which coordinated branching of epithelial and vascular tubes culminates in their co-alignment. Using different ablative strategies to eliminate the lung vasculature, both in vivo and in lung explants, we show that proximity to the vasculature is indeed essential for patterning airway branching. Remarkably, although epithelial branching per se proceeded at a nearly normal rate, branching stereotypy was dramatically perturbed following vascular ablation. Specifically, branching events requiring a rotation to change the branching plane were selectively affected. This was evidenced by either the complete absence or the shallow angle of their projections, with both events contributing to an overall flat lung morphology. Vascular ablation also led to a high frequency of ectopic branching. Regain of vascularization fully rescued arrested airway branching and restored normal lung size and its three-dimensional architecture. This role of the vasculature is independent of perfusion, flow or blood-borne substances. Inhibition of normal branching resulting from vascular loss could be explained in part by perturbing the unique spatial expression pattern of the key branching mediator FGF10 and by misregulated expression of the branching regulators Shh and sprouty2. Together, these findings uncovered a novel role of the vasculature in organogenesis, namely, determining stereotypy of epithelial branching morphogenesis.  相似文献   
49.
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号