首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1977篇
  免费   209篇
  国内免费   153篇
  2339篇
  2024年   10篇
  2023年   35篇
  2022年   64篇
  2021年   107篇
  2020年   78篇
  2019年   106篇
  2018年   127篇
  2017年   73篇
  2016年   105篇
  2015年   144篇
  2014年   157篇
  2013年   138篇
  2012年   168篇
  2011年   133篇
  2010年   83篇
  2009年   72篇
  2008年   98篇
  2007年   83篇
  2006年   72篇
  2005年   60篇
  2004年   57篇
  2003年   64篇
  2002年   80篇
  2001年   39篇
  2000年   28篇
  1999年   22篇
  1998年   23篇
  1997年   13篇
  1996年   16篇
  1995年   10篇
  1994年   13篇
  1993年   5篇
  1992年   3篇
  1991年   15篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有2339条查询结果,搜索用时 0 毫秒
61.
62.
63.
Cardiovascular diseases remain the leading cause of mortality worldwide. Recent studies of AMP-activated protein kinase (AMPK), a highly conserved sensor of cellular energy status, suggest that there might be therapeutic value in targeting the AMPK signaling pathway. AMPK is found in most mammalian tissues, including those of the cardiovascular system. As cardiovascular diseases are typically associated with blood flow occlusion and blood occlusion may induce rapid energy deficit, AMPK activation may occur during the early phase upon nutrient deprivation in cardiovascular organs. Therefore, investigation of AMPK in cardiovascular organs may help us to understand the pathophysiology of defence mechanisms in these organs. Recent studies have provided proof of concept for the idea that AMPK is protective in heart as well as in vascular endothelial and smooth muscle cells. Moreover, dysfunction of the AMPK signalling pathway is involved in the genesis and development of various cardiovascular diseases, including atherosclerosis, hypertension and stroke. The roles of AMPK in the cardiovascular system, as they are currently understood, will be presented in this review. The interaction between AMPK and other cardiovascular signalling pathways such as nitric oxide signalling is also discussed.  相似文献   
64.
Commensal and pathogenic bacteria express adhesive proteins on their cell surface, which are important for colonisation of the host. In Gram-positive bacteria, these adhesins are often covalently anchored to the cell wall by a sortase enzyme. A recent bioinformatic study has revealed a total of 860 predicted cell wall-anchored proteins in 94 completely sequenced genomes. The interaction of adhesins with host cells can be analysed with the use of adhesin-coated microbeads. Here we show that sortase-mediated ligation can be used for the site-specific immobilisation of adhesins to red-fluorescence microspheres. This coupling method allows for the native orientation of the adhesins on the beads. Furthermore, the high substrate specificity of the sortase enzyme allows the use of only partially purified recombinant proteins, which reduces preparation time and costs, and also prevents coupling of any contaminants that might interfere with cell binding.  相似文献   
65.
66.
In the normal human prostate, undifferentiated proliferative cells reside in the basal layer and give rise to luminal secretory cells. There are, however, few epithelial cell lines that have a basal cell phenotype and are able to differentiate. We set out to develop a cell line with these characteristics that would be suitable for the study of the early stages of prostate epithelial cell differentiation. We produced a matched pair of conditionally immortalized prostate epithelial and stromal cell lines derived from the same patient. The growth of these cells is temperature dependent and differentiation can be induced following a rise in culture temperature. Three-dimensional co-cultures of these cell lines elicited gland-like structures reminiscent of prostatic acini. cDNA microarray analysis of the epithelial line demonstrated changes in gene expression consistent with epithelial differentiation. These genes may prove useful as markers for different prostate cell types. The cell lines provide a model system with which to study the process of prostatic epithelial differentiation and stromal-epithelial interactions. This may prove to be useful in the development of differentiation-targeted prostate cancer therapies.  相似文献   
67.
68.
A high throughput screening was carried out in order to search for inhibitors of acetylcholinesterase (AChE) from microorganism metabolites. An actinomycete strain was found to produce active compounds named N98-1272 A, B and C with IC50 of 15.0, 11.5, 12.5 microM, respectively. Structural studies revealed that the three compounds are identical to the known antibiotics, Manumycin C, B and A. Kinetic analyses showed that N98-1272 C (Manumycin A) acted as a reversible noncompetitive inhibitor of acetylcholinesterase, with a Ki value of 7.2 microM. The cyclohexenone epoxide part of the structure plays a crucial role in the inhibitory activity against AChE. Compared with Tacrine, N98-1272 A, B, and C exhibit much better selectivity toward AChE over BuChE.  相似文献   
69.
Zhang  Lingye  Zhou  Anni  Zhu  Shengtao  Min  Li  Liu  Si  Li  Peng  Zhang  Shutian 《Molecular and cellular biochemistry》2022,477(1):319-326

Rho GTPases are molecular switches that play an important role in regulating the behavior of a variety of tumor cells. RhoA GTPase-activating protein 26 (ARHGAP26) is a GTPase-activating protein and inhibits the activity of Rho GTPases by promoting the hydrolytic ability of Rho GTPases. It also affects tumorigenesis and progression of various tumors through several methods, including formation of abnormal fusion genes and circular RNA. This review summarizes the biological functions and molecular mechanisms of ARHGAP26 in different tumors, proposes the potential clinical value of ARHGAP26 in cancer treatment, and discusses current issues that need to be addressed.

  相似文献   
70.
CAP-Gly domain of dynactin, a microtubule-associated activator of dynein motor, participates in multiple cellular processes, and its point mutations are associated with neurodegenerative diseases. Recently, we have demonstrated that conformational plasticity is an intrinsic property of CAP-Gly. To understand its origin, we addressed internal dynamics of CAP-Gly assembled on polymeric microtubules, bound to end-binding protein EB1 and free, by magic angle spinning NMR and molecular dynamics simulations. The analysis of residue-specific dynamics of CAP-Gly on time scales spanning nano- through milliseconds reveals its unusually high mobility, both free and assembled on polymeric microtubules. On the contrary, CAP-Gly bound to EB1 is significantly more rigid. Molecular dynamics simulations indicate that these motions are strongly temperature-dependent, and loop regions are surprisingly mobile. These findings establish the connection between conformational plasticity and internal dynamics in CAP-Gly, which is essential for the biological functions of CAP-Gly and its ability to bind to polymeric microtubules and multiple binding partners. In this work, we establish an approach, for the first time, to probe atomic resolution dynamic profiles of a microtubule-associated protein assembled on polymeric microtubules. More broadly, the methodology established here can be applied for atomic resolution analysis of dynamics in other microtubule-associated protein assemblies, including but not limited to dynactin, dynein, and kinesin motors assembled on microtubules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号