首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   60篇
  439篇
  2023年   2篇
  2022年   2篇
  2019年   5篇
  2018年   2篇
  2016年   3篇
  2015年   14篇
  2014年   14篇
  2013年   21篇
  2012年   11篇
  2011年   26篇
  2010年   16篇
  2009年   15篇
  2008年   18篇
  2007年   20篇
  2006年   14篇
  2005年   10篇
  2004年   10篇
  2003年   12篇
  2002年   8篇
  2001年   6篇
  2000年   21篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1996年   13篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   11篇
  1991年   5篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   14篇
  1985年   6篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1972年   2篇
  1962年   2篇
  1961年   2篇
  1916年   1篇
  1915年   1篇
  1910年   2篇
排序方式: 共有439条查询结果,搜索用时 0 毫秒
81.
The major part of tracheobronchial blood flow is distributed to the mucosa. Its microvasculature comprises 10-20% of the subepithelial tissue volume, with blood flow ranging from 30 to 95 ml.min-1.100 g wet tissue-1 in different animal species. Mucosal blood flow is influenced by vascular and airway pressures, inspired air conditions, and autonomic neurotransmitters. Several inflammatory mediators and neuropeptides are capable of enhancing the permeability for macromolecules in postcapillary venules and of augmenting tissue water volume, often with a concomitant increase in perfusion. These microvascular responses of the lower airway mucosa have an important role under various conditions of physiological stress and in airway inflammation.  相似文献   
82.
Escherichia coli K-12 can readily mutate to use methylphosphonic acid as the sole phosphorus source by a direct carbon-to-phosphorus (C-P) bond cleavage activity that releases methane and Pi. The in vivo C-P lyase activity is both physiologically and genetically regulated as a member of the phosphate regulon. Since psiD::lacZ(Mu d1) mutants cannot metabolize methylphosphonic acid, psiD may be the structural gene(s) for C-P lyase.  相似文献   
83.
We compared the development of antigen-induced airway hyperresponsiveness (AHR) 24 h after challenge with Ascaris suum antigen in allergic sheep with acute (n = 7) and with dual (n = 7) airway responses and then attempted to modify this AHR. Cholinergic airway responsiveness was determined by measuring the carbachol dose required to increase specific lung resistance (sRL) 150% (i.e., PC150). Subsequently the sheep were challenged with antigen and sRL was measured at predetermined times to document the presence or absence of a late response. PC150 was redetermined 24 h later followed by bronchoalveolar lavage (BAL) to assess inflammation. Only dual responders developed AHR (PC150 decreased, P less than 0.05). There were no significant differences in BAL between the two groups. Six dual responders were then, on separate occasions (greater than or equal to 3 wk), pretreated with placebo, indomethacin (2 mg/kg iv), or a leukotriene antagonist, FPL-57231 (30 mg inhaled). Neither agent significantly affected the acute response to antigen. Only FPL pretreatment blocked the late response, but both agents blocked the antigen-induced AHR 24 h later. BAL at 24 h showed no significant differences. These results indicate that only dual responders develop AHR 24 h after antigen challenge. This AHR appears independent of the late increase in sRL or the severity of pulmonary inflammation. AHR appears to be sensitive to agents that interfere with the early release or actions of cyclooxygenase and lipoxygenase metabolites in dual responders.  相似文献   
84.
The physiological and genetic controls operating on phosphate-regulated promoters were studied in greater detail. This was done by defining the control for three phosphate-regulated genes: phoA, psiE, and psiO. Each is highly inducible by phosphate starvation. Individually, these phosphate-starvation-inducible, psi, genes at the same time show common and differing features in their molecular control. The phoA gene, encoding alkaline phosphatase, is specifically induced by phosphate starvation. It is negatively controlled by phoR as well as by the phosphate-specific transport (PST) system in Escherichia coli. phoA induction is positively controlled by the phoB, M, and R products; it is unaffected by the cAMP and CAP system. The psiE and psiO genes were studied by using strains with lacZ fused to their respective promoters. psiE-lacZ is induced by phosphate-, carbon- or nitrogen-limited growth. Genetically, psiE-lacZ induction is partially phoB and phoR-dependent. However, its expression is phoM-independent. This implies that phoB/phoR coupled control differs from phoB/phoM coupled control. Repression of psiE-lacZ is substantially altered in only some PST mutants, such as phoT. In addition, psiE-lacZ is negatively controlled by the cAMP and CAP system. psiO-lacZ is induced by phosphate-, carbon- or nitrogen-limited growth or by anaerobiosis. Its expression is unaffected by any pho mutation that has been previously described. A cell density-dependent induction of psiO-lacZ is observed in lon mutants. Also, psiO-lacZ is negatively controlled by the cAMP-CAP system. In summary, these results demonstrate that co-ordinately regulated promoters can have some common regulatory elements while, at the same time, not sharing other controlling factors.  相似文献   
85.
Summary Kinetin induces an increase in the caffeine content of Coffea leaves of up to 40% of the normal level. The effect is most pronounced in young leaves; it is, however, transient. After six days in old leaves and after 12 days in young leaves, the caffeine content has decreased to its normal level.The results are discussed in relation to the recently discovered fact that cytokinins kinins are constituents of rare nucleotides of seryl-t-RNA. It seems plausible that the methylations necessary in the synthesis of caffeine are linked with this primary function of cytokinins.  相似文献   
86.
87.
In vivo instillation of Pasteurella haemolytica (greater than or equal to 10(7) colony-forming units/kg) into a lobar bronchus of sheep produced bacterial pneumonia by 7 days postinoculation. Infection was verified bacteriologically and histologically. Macromolecule secretion and ion and water fluxes were subsequently measured in tracheal tissues in vitro and were compared with values from sham-infected sheep. Macromolecules were radiolabeled with 35SO4 and [3H]threonine, and we measured the secretion of macromolecule-bound radiolabel onto the mucosa. Unidirectional fluxes of Cl-, Na+, and water were measured with radioactive tracers under open-circuit and short-circuit conditions. Lung infection increased basal secretion of bound 35SO4 (by 189%) and bound [3H]-threonine (by 110%). It significantly increased net Na+ absorption under open- and short-circuit conditions and induced open-circuit net absorption of Cl- and water (16 +/- 29 microliters X cm-2 X h-1). These changes were associated with specific recruitment of neutrophils and elevated levels of arachidonate metabolites (thromboxane B2 and leukotriene B4) in the airways. Thus the bacterial pneumonia-induced changes in tracheal mucus secretion may be the result of airway inflammation.  相似文献   
88.
89.
90.
The present study has been performed to elucidate a possiblerole of cell volume in low-density lipoprotein (LDL) binding andinternalization (LDLb+i). Asshown previously, increase of extracellular osmolarity (OSMe) andK+ depletion, both known to shrinkcells, interfere with the formation of clathrin-coated pits and thuswith LDLb+i. On the other hand,alterations of cell volume have been shown to modify lysosomal pH,which is a determinant of LDLb+i.LDLb+i have been estimated fromheparin-releasable (binding) or heparin-insensitive (internalization)uptake of 125I-labeled LDL. OSMewas modified by alterations of extracellular concentrations of ions,glucose, urea, or raffinose. When OSMe was altered by varying NaClconcentrations, LDLb+i decreased (by 0.5 ± 0.1%/mM) with increasing OSMe andLDLb+i increased (by 1.2 ± 0.1%/mM) with decreasing OSMe, an effect mainly due to alteredaffinity; the estimated dissociation constant amounted to 20.6, 48.6, and 131.6 µg/ml at 219, 293, and 435 mosM, respectively. A 25%increase of OSMe increased cytosolic (by 0.46 ± 0.03) and decreasedlysosomal (by 0.14 ± 0.02) pH. Conversely, a 25% decrease of OSMedecreased cytosolic (by 0.28 ± 0.02) and increased lysosomal (by0.17 ± 0.02) pH. Partial replacement of extracellularNa+ withK+ had little effect onLDLb+i, although it swelledhepatocytes and increased lysosomal and cytosolic pH. Hypertonicglucose, urea, or raffinose did not exert similar effects despite ashrinking effect of hypertonic raffinose. Monensin, which completelydissipates lysosomal acidity, virtually abolishedLDLb+i. In conclusion, theobservations reveal a significant effect of ionic strength onLDLb+i. The effect is, however,not likely to be mediated by alterations of cell volume or alterationsof lysosomal pH.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号