首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   18篇
  2023年   4篇
  2022年   12篇
  2021年   16篇
  2020年   4篇
  2019年   9篇
  2018年   16篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   20篇
  2013年   23篇
  2012年   25篇
  2011年   25篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
301.
302.
Camels are a fundamental livestock resource with a significant role in the agricultural economy of dry regions of Asia and Africa. Similarly, llamas and alpacas are an indigenous resource considered as beasts of burden in South America because of their surefootedness and ability to adapt. Camel racing, a highly lucrative and well-organized sport, camel beauty contests, and high demand for camel milk lead to a steady interest in the multiplication of elite animals by in vitro embryo production (IVEP) in this species during the last few decades. Although offspring have been produced from in vitro produced embryos, the technique is still not that well developed compared with other domestic animal species such as cattle. IVEP involves many steps, including the collection of oocytes from either slaughterhouse ovaries or live animals through ultrasound-guided transvaginal aspiration; in vitro maturation of these collected oocytes; collection and preparation of semen for fertilization; culture and passaging of cells for nuclear transfer, chemical activation of the reconstructed embryos, and in vitro culture of embryos up to the blastocyst stage for transfer into synchronized recipients to carry them to term. This review discusses the present status of all these steps involved in the IVEP of camelids and their future perspectives.  相似文献   
303.
304.
The natural populations of Dactylorhiza hatagirea have been greatly affected due to incessant exploitation. As such, studies on its population attributes together with habitat suitability and environmental factors affecting its distribution are needed to be undertaken for its conservation in nature. Present study aimed at accessing an impact of anthropogenic pressure on population structure and locate suitable habitats for the conservation of this critically endangered orchid. Considerable changes in the phytosociological attributes were observed on account of the changing magnitude and extent of anthropogenic threat in their natural abode. The distribution pattern of species indicated that more than 90% of the populations exhibit substantially aggregated spatial distribution. Maximum Entropy (MaxEnt) distribution modelling algorithm was used to predict suitable habitat and potential area for its cultivation and reintroduction. Twenty-seven occurrence records, nineteen bioclimatic variables, altitude, and slope were used. MaxEnt map output gave the habitat suitability for this species and predicted its distribution in the North-Western Himalayas of India for approximately 616 km2. Jackknifing indicated that maximum temperature of warmest month, annual mean temperature, mean temperature of the driest quarter, and mean temperature of the wettest quarter were the governing factors for its distribution and hence, presented a higher gain with respect to other variables. According to permutation importance, precipitation seasonality and mean temperature of wettest quarter shows the prominent impact on the habitat distribution. Results of AUC (area under curve) were statistically significant (0.940) and the line of predicted omission falls very close to an omission on training samples, validating a better run of the model. Response curves revealed a probable increase in the occurrence of D. hatagirea with an increase in mean temperature of the wettest quarter and maximum temperature of the warmest month contributed more than 50% to predicted habitat suitability. Direct field observations concurrent with predicted habitat suitability and google-earth images represent greater model thresholds for successful inception of the species. Together, the study proposes that the species can be conserved in or near its present-day natural habitats and is equally effective in determining the possible habitats for its cultivation and reintroduction.  相似文献   
305.
The in vivo formation and repair of specific DNA lesions produced by alkylating agents of contrasting carcinogenic potencies were investigated. Male Sprague-Dawley rats were treated with direct-acting alkylating agents methylmethane sulfonate (MMS) or methylnitrosourea (MNU). The amounts of N-3-methyladenine (3-meA), N-7-methylguanine (7-meG), and methylphosphotriesters (mePTE) in the DNA of liver and brain were determined following selective removal of the methylated bases by enzyme 3-meA N-glycosylase from Micrococcus luteus and thermal depurination at neutral pH. Both enzyme- and heat-induced alkali-labile apurinic sites were converted to single-strand breaks on incubation with 0.1 M NaOH. The number of such sites was quantitated following centrifugation of the DNA in alkaline sucrose gradients, fluorescent detection of unlabeled DNA, and estimation of number-average molecular weight. The results show a carcinogen dose-dependent initial linear increase in the number of enzyme- and heat-induced DNA strand breakage in both liver and brain DNA. With a half-life of approximately 3 h, 3-meA was removed from the tissues, whereas 45 to 55% of 7-meG remained unrepaired at 48 h. The study of the alkylation damage induced by MNU treatment of rats showed that the kinetics of repair for 3-meA and 7-meG was similar to the MMS-treated tissues and that mePTE persisted over a 7-day period. The technique developed does not require the use of radiolabeled reagents of DNA and allows for the selective quantitation of DNA alkylation lesions like 3-meA and 7-meG in the presence of nitrosourea-induced phosphotriesters.  相似文献   
306.
To assess the role of DNA alkylation damage in oncogene activation, plasmid DNA containing H-ras proto-oncogene (p220-EC) and oncogene (p220-EJ) were treated with increasing concentrations of carcinogenic methylnitrosourea (MNU) and ethylnitrosourea (ENU). The modified plasmid DNA were analyzed by transfection-transformation of the NIH/3T3-recipient cells. Treatment with varying doses of MNU (0.1-5 mM) and ENU (1-15 mM) did not result in the inactivation of the plasmid containing target genes. A transformation efficiency of greater than 40% was observed upon treatment of H-ras oncogene with the highest doses of the alkylating agents. The morphologically transformed foci obtained with alkylated p220-EC ranged from 2.8 to 0.3/microgram MNU alkylated and 1.6 to 0.6/microgram ENU alkylated plasmid DNA. A significant proportion of the morphological transformants exhibited growth in soft agar. The HpaII/MspI restriction length polymorphism (RFLP) at codon 12 of H-ras exon-1 was detected with 4 independently isolated clones obtained from MNU-alkylated p220-EC transfections. Allele-specific in situ gel hybridization with a battery of codon 12 and codon 61 oligonucleotide probes confirmed these RFLPs to be due to sequence changes at codon 12. No clone with sequence changes in the H-ras codon 61 could be detected. The data indicate that a high degree of in vitro alkylation damage of the target gene is necessary to elicit mutational activation of H-ras in transfection-transformation assay. Low frequency notwithstanding, the data demonstrate that DNA alkylation damage at critical target sites can initiate neoplastic cellular transformation.  相似文献   
307.
Summary The screening of micro-organisms decomposing wheat straw was done under laboratory conditions on the basis of the amount of carbon mineralized from wheat straw during a period of four months. In general, inoculation of wheat straw with different micro-organisms had favorable effect on the amount of carbon mineralized. Among the bacterial and fungus cultures isolated from baited wheat straw an Aspergillus sp. (Isolate No. 18) proved to be the most rapid wheat straw decomposer under laboratory conditions. re]19751008  相似文献   
308.
309.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号