The specific and high-level expression of 1Ax1 is determined by different promoter regions. HMW-GS synthesis occurs in aleurone layer cells. Heterologous proteins can be stored in protein bodies.
Abstract
High-molecular-weight glutenin subunit (HMW-GS) is highly expressed in the endosperm of wheat and relative species, where their expression level and allelic variation affect the bread-making quality and nutrient quality of flour. However, the mechanism regulating HMW-GS expression remains elusive. In this study, we analyzed the distribution of cis-acting elements in the 2659-bp promoter region of the HMW-GS gene 1Ax1, which can be divided into five element-enriched regions. Fragments derived from progressive 5′ deletions were used to drive GUS gene expression in transgenic wheat, which was confirmed in aleurone layer cells, inner starchy endosperm cells, starchy endosperm transfer cells, and aleurone transfer cells by histochemical staining. The promoter region ranging from ??297 to ??1 was responsible for tissue-specific expression, while fragments from ??1724 to ??618 and from ??618 to ??297 were responsible for high-level expression. Under the control of the 1Ax1 promoter, heterologous protein could be stored in the form of protein bodies in inner starchy endosperm cells, even without a special location signal. Our findings not only deepen our understanding of glutenin expression regulation, trafficking, and accumulation but also provide a strategy for the utilization of wheat endosperm as a bioreactor for the production of nutrients and metabolic products.
Russian Journal of Plant Physiology - To explore proteomic characters of Kunitz-type trypsin inhibitors (KTIs) deleted soybean (Glycine max (L.) Merr.), seeds without KTIs and its female parent... 相似文献
Mammalian Genome - Increasing evidence shows that miRNAs play pivotal roles in cardiovascular diseases, including heart failure (HF). The aim of this study was to investigate the role of miR-129-5p... 相似文献
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes. 相似文献
Homo!ogy-directed repair(HDR)is one of two major DNA repair pathways to mend the double-strand breaks(DSBs)formed in the genome(Liang et al.,1998;Pardo et al.,2009).Although less efficient compared with another DNA repair pathway,nonhomologous end joining(NHEJ),HDR is a type of precise repair to restore DNA damage and sustain genomic stability(Pardo et al.,2009;Ceccaldi et al.,2016).By contrast,NHEJ usually introduces mutations into the repaired site,thus probably harming the genomic integrity(Lieber et al.,2003).The error-free property enables HDR to be harnessed to correct a faulty mutation for therapeutic purpose in cells or in the body(Wu et al.,2013).In add让ion,HDR possesses great potential in the generation of genome-edited animals with precise genetic modifications,such as point mutation,DNA replacement,and DNA insertion in a specific genomic site(Wang et al.,2013).However,the low repair frequency mediated by HDR significantly limits让s application for efficient gene correction or establishment of various genetically modified animal models.Currently,multiple site-specific endonucleases have emerged as highly efficient tools to create targeted DSBs and markedly promote subsequent DNA repair either via HDR or NHEJ(Gaj et al.,2013).Nonetheless,the HDR-mediated modifications following the cleavage of engineering nucleases are still inefficient,usually with an efficiency less than 20%in cultured mammalian cells and embryos(Mali et al..2013;Wang et al.,2013;Yang et al.,2013). 相似文献