首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110571篇
  免费   8461篇
  国内免费   6973篇
  126005篇
  2024年   215篇
  2023年   1452篇
  2022年   3239篇
  2021年   5477篇
  2020年   3576篇
  2019年   4374篇
  2018年   4353篇
  2017年   3229篇
  2016年   4599篇
  2015年   6677篇
  2014年   7868篇
  2013年   8319篇
  2012年   9962篇
  2011年   8877篇
  2010年   5446篇
  2009年   4746篇
  2008年   5585篇
  2007年   4926篇
  2006年   4373篇
  2005年   3338篇
  2004年   2935篇
  2003年   2534篇
  2002年   2207篇
  2001年   2002篇
  2000年   1862篇
  1999年   1842篇
  1998年   1019篇
  1997年   1137篇
  1996年   1020篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   994篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   114篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
CNBr cleavage of rabbit heavy (H) chains leads to the formation of a fragment, C-1, which consists of the N-terminal half of the H chain. Fragment C-1 is cleaved at methionyl residues but held together by intrachain S-S bonds so that smaller fragments can be liberated by total reduction and alkylation. In the case of the C-1 fragment from an anti-p-azobenzoate antibody preparation, which has a light (L) chain of markedly restricted heterogeneity, total reduction and alkylation liberated seven major fragments in good yield. The N-terminus of two of these fragments corresponds to position 35 of the H chain but their N-terminal sequences are clearly different. The H chain regions represented by the other fragments implied that they were derived from H chains having different distributions of methionyl residues. This hypothesis was supported by isolating six different antibody components from the antibody preparation by isoelectric focusing and then digesting them with CNBr. Comparison of the products showed that the six components all appeared to behave differently. These results are interpreted as suggesting that the process whereby H and L chains are paired in vivo may not be completely specific and may provide a simple means of generating a significant contribution to antibody diversity.  相似文献   
862.
863.
864.
The D to I conversion of glycogen synthase from human polymorphonuclear leukocytes was examined both in a gel-filtered homogenate and in a preparation of glycogen particles with adhering enzymes, purified by chromatography on concanavalin A bound to Sepharose. It was found that glucose 6-phosphate as well as mannose 6-phosphate, glucosamine 6-phosphate, and 2-deoxy-glucose 6-phosphate activated the reaction, whereas the corresponding sugars were without effect. Mn2+ and Ca2+ increased the conversion rate by 51% and 27%, respectively, whereas Mg2+ and inorganic phosphate were without effect. Sodium fluoride inhibited the reaction completely. Glycogen inhibited the reaction in physiological concentrations and 0.5 mM glucose 6-phosphate was able to overcome this inhibition. MgATP greatly augmented the inhibition caused by glycogen in the glycogen particle preparation. This combined effect could be overcome by glucose 6-phosphate in concentrations from 0.1 to 1 mM. Phosphorylase alpha purified from human polymorphonuclear leukocytes inhibited the D to I conversion in a glycogen particle preparation. The inhibition was counteracted by glucose 6-phosphate and to a lesser degree by AMP. Phosphorylase beta was also inhibitory, but only at higher concentrations than phosphorylase alpha. No phosphorylase phosphatase activity was found in the glycogen particle preparation, which may indicate that chromatography on concanavalin A-Sepharose separates this enzyme from the synthase phosphatase or partially destroys the activity of a hypothetical common protein phosphatase.  相似文献   
865.
Summary A group of chlorophyll deficient mutants (br s mutants) of Chlamydomonas accumulates protoporphyrin and has poorly developed chloroplast membrane systems (Wang et al. 1974). In order to determine whether a poorly developed chloroplast membrane system is the reason for, or the result of, the inability of the br s mutants to metabolize protoporphyrin to chlorophyll, a second mutation was selected which restored chlorophyll synthesis in br s mutants. One such double mutant (br s-2 g-4) was analyzed. The double mutant br s-2 g-4 has partially restored chlorophyll synthesis, but has defective photosystem II and photosystem I electron transport as well as abnormal chloroplast ultrastructure. Since these defects are not present in cells carrying only the g-4 mutation, they are presumed to be caused by the br s-2 mutation. It is concluded that a defect in chloroplast membrane development resulting from the br s-2 mutation causes an apparent defect in magnesium chelation by protoprophyrin. This is consistant with evidence that chlorophyll biosynthesis from magnesium protoporphyrin to chlorophyll takes place on the chloroplast membranes.  相似文献   
866.
A microbial cooxidation process for 1,2-dihydroxy-1,2-dihydronaphthalene from naphthalene has been demonstrated. A Pseudomonas putida it119 mutant strain grown with glucose as the sole carbon and energy source was used to oxidize naphthalene. Growth characteristics of the P. putida mutant strain were studied in both batch and continuous fermentation experiments. The rate of product formation was found to depend on naphthalene particle sizes, initial naphthalene and glucose concentrations. Kinetic models were developed to quantify the microbial cooxidation process and a two-stage fermentation process is proposed for further studies.  相似文献   
867.
L P Ting  J H Wang 《Biochemistry》1980,19(25):5665-5670
The protection of F1 ATPase by inorganic phosphate, ADP, ATP, and magnesium ion against inactivation by 1-fluoro-2,4-dinitrobenzene, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, and 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline, respectively, has been investigated. Dissociation equilibrium constants and rate constants for the labeling reactions have been deduced from a quantitative treatment of the kinetic data. Comparison of these dissociation constants with each other and with the corresponding literature values indicates that the essential Tyr, Arg, Lys, and Glu or Asp residues are indeed located at the catalytic site of the enzyme. Examination of the rate constants for the labeling reactions in the presence of excess inorganic phosphate, ADP, ATP, or magnesium ion, respectively, suggests that the essential phenol and amino groups are located nearer to the bound inorganic phosphate or the gamma-phosphate group than to the alpha- or beta-phosphate group of the bound ATP, that the essential guanidinium group is located nearer to the alpha- or beta-phosphate group than to the gamma-phosphate group of the bound ATP or the bound inorganic phosphate, and that the essential carboxylate group is located slightly farther away but complexed with magnesium ion which it shares with the bound inorganic phosphate. A mechanism consistent with these topographical relationships is proposed for the catalytic hydrolysis and synthesis of ATP.  相似文献   
868.
869.
870.
Physostigmine (AntiliriumR) has been reported to reverse benzodiazepine- induced sleep or coma in man and prevent death in animals. Accordingly, we investigated the effect of Antilirium upon benzodiazepine binding to both rat and human brain. We report that Antilirium inhibits 3H-diazepam and 3H-flunitrazepam binding in a dose-dependent manner. The degree of inhibition of binding by Antilirium correlates with the affinity of benzodiazepine for its “receptor” such that diazepam is more affected than flunitrazepam. The inhibition is rapid but the kinetics are complex with only doses of Antilirium showing competitive inhibition when studied at equilibrium. These results may explain, at least in part, the effectiveness of Antilirium at reversing benzodiazepine-induced hypnosis without necessarily implicating a cholinergic mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号