首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110547篇
  免费   8459篇
  国内免费   6965篇
  125971篇
  2024年   215篇
  2023年   1451篇
  2022年   3239篇
  2021年   5476篇
  2020年   3576篇
  2019年   4374篇
  2018年   4353篇
  2017年   3230篇
  2016年   4600篇
  2015年   6679篇
  2014年   7865篇
  2013年   8315篇
  2012年   9960篇
  2011年   8869篇
  2010年   5444篇
  2009年   4748篇
  2008年   5585篇
  2007年   4924篇
  2006年   4370篇
  2005年   3333篇
  2004年   2935篇
  2003年   2531篇
  2002年   2205篇
  2001年   2002篇
  2000年   1861篇
  1999年   1842篇
  1998年   1018篇
  1997年   1137篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   115篇
  1980年   108篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Squalene has been used as a dietary supplement for a long history due to its potential cancer‐preventive function. However, the mechanism has not been investigated in detail yet. Therefore, the aim of this study is to see if the plasma coenzyme Q10 (CoQ10) level will be altered by gavage of squalene and oxidosqualenes to rats. In the present work, a sensitive and simple high‐performance analytical method based on ultra‐high‐performance liquid chromatography coupled with an Orbitrap mass spectrometry (UPLC‐Orbitrap‐MS) was developed for the quantification of CoQ10 in rat plasma. Coenzyme Q9 (CoQ9) was employed as the internal standard. CoQ10 was determined after acetonitrile‐mediated plasma protein precipitation using UPLC‐Orbitrap‐MS in negative ion mode. Intragastric administration of squalene and the two squalene epoxides into rats once daily for several days elevated the level of CoQ10 in their plasma, but there was no significant difference between high‐dose (286 mg/kg) and low‐dose (143 mg/kg) groups. Intragastric administration of squalene once a day for 5 consecutive days and oxidosqualenes once a day for 3 consecutive days is necessary for reaching the steady‐state level of CoQ10. Our present findings indicate that squalene and oxidosqualenes may be useful for stimulating the synthesis of CoQ10 in rats.  相似文献   
942.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   
943.
Electrocatalysis is the most important electrode reactions for many energy storage and conversion devices, which are considered a key part of the resolution of the energy crisis. Toward this end, design of efficient electrocatalysts is of critical significance. While extensive research has been extended to develop excellent electrocatalysts, the fundamental understanding of the relationship between the electronic and structural properties of electrocatalysts and the catalytic activity must remain a priority. In this review, the activity modulation of electrocatalysts by charge transfer effects, including intramolecular and intermolecular charge transfer, is systematically introduced. With suitable charge transfer modification, such as heteroatom doping, defect engineering, molecule functionalization, and heterojunctions, the electrocatalytic activity of carbon‐based electrocatalysts can be significantly boosted. The manipulation of the electronic structure of carbon‐based materials by charge transfer may serve as a fundamental mechanism for performance enhancement. After establishing an understanding of the relationship between catalytic activity and charge transfer, the opportunities and challenges for the design of electrocatalyst with charge transfer effects are discussed.  相似文献   
944.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   
945.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   
946.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   
947.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   
948.
Ionic liquids (ILs) are a family of nonconventional molten salts that offer many advantages, such as negligible vapor pressures, negligible flammability, wide liquidus ranges, good thermal stability, and much synthesis flexibility. The unique solvation environment of these ILs provides new reaction or flux media for controlling formation of solid‐state materials with a minimum perturbation of morphologies. A successful lithiation via ionothermal synthesis using a cost‐effective Li halide as Li source and recyclable ILs as solvents is reported here for the direct recycling of LiNi1/3Co1/3Mn1/3O2 (NCM 111) cathodes. In addition, the ionic liquids can be readily recycled and reused after ionothermal lithiation. The lithiation of spent cathodes can enable the direct recycling of spent cathode materials in lithium‐ion batteries.  相似文献   
949.
Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.  相似文献   
950.
The emodin anthraquinone derivatives are generally used in traditional Chinese medicine due to their various pharmacological activities. In the present study, a series of emodin anthraquinone derivatives have been designed and synthesized, among which 1,3‐dihydroxy‐6,8‐dimethoxyanthracene‐9,10‐dione is a natural compound that has been synthesized for the very first time, and 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione is a compound that has never been reported earlier. Interestingly, while total seven of these compounds showed neuraminidase inhibitory activity in influenza virus with inhibition rate more than 50 %, specific four compounds exhibited significant inhibition of tumor cell proliferation. The further results demonstrate that 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione showed the best anticancer activity among all the synthesized compounds by inducing highest apoptosis rate to HCT116 cancer cells and arresting their G0/G1 cell cycle phase, through elevation of intracellular level of reactive oxygen species (ROS). Moreover, the binding of 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione with BSA protein has thoroughly been investigated. Altogether, this study suggests the neuraminidase inhibitory activity and antitumor potential of the new emodin anthraquinone derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号