首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110573篇
  免费   8452篇
  国内免费   6958篇
  125983篇
  2024年   215篇
  2023年   1451篇
  2022年   3239篇
  2021年   5476篇
  2020年   3576篇
  2019年   4374篇
  2018年   4353篇
  2017年   3230篇
  2016年   4601篇
  2015年   6680篇
  2014年   7864篇
  2013年   8317篇
  2012年   9962篇
  2011年   8870篇
  2010年   5447篇
  2009年   4747篇
  2008年   5587篇
  2007年   4923篇
  2006年   4370篇
  2005年   3332篇
  2004年   2933篇
  2003年   2531篇
  2002年   2205篇
  2001年   2002篇
  2000年   1860篇
  1999年   1843篇
  1998年   1017篇
  1997年   1137篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   667篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   391篇
  1984年   211篇
  1983年   197篇
  1982年   138篇
  1981年   114篇
  1980年   107篇
  1979年   116篇
  1978年   78篇
  1977年   60篇
  1974年   75篇
  1972年   63篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
Nitric oxide production, nitric oxide synthase (NOS) and mitochondrial nitrite-reducing activities in roots, leaves and stems of different developmental stages were investigated, using potted 3-year-old apple (Malus domestica Borkh.) trees. The arginine-dependent NOS activity is sensitive to NOS inhibitor L-NAME and aminoguanidine (AG), with L-NAME being more effective than AG. Endogenous NO production, NOS and mitochondrial nitrite-reducing activities are predominately presented in young leaves and especially in young white roots and young stems. Root and stem mitochondria can reduce nitrite to nitric oxide at the expense of NADH, however, this mitochondrial nitrite-reducing activity is absent in leaves.  相似文献   
962.
杨仙荣  王美琴  李少华 《遗传》2014,36(9):849-856
人类Y染色体由于其性别决定的特殊功能和独有的进化史一直以来都备受关注。Y染色体起源于常染色体,经历了严重的退化过程。由于其缺乏重组,蛋白编码基因少,重复序列多所以研究进展缓慢。近年来,随着比较基因组及测序技术的快速发展,对人类Y染色体最终命运的争论不断加剧,Y染色体的研究正逐步成为热点。文章综述了人类Y染色体的结构、遗传特点、起源及进化过程,并根据目前的研究进展对Y染色体的最终命运进行了讨论,提出了作者的一些看法,以期为从事遗传及性染色体进化的研究者提供参考。  相似文献   
963.
Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth‐Regulating Factor 4 (OsGRF4), which encodes a growth‐regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high‐yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth.  相似文献   
964.
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K+-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.  相似文献   
965.
Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease of Solanaceae crops. In this study, the soil microbial effects of silicon-induced tomato resistance against R. solanacearum were investigated through pot experiment. The results showed that exogenous 2.0 mM Si treatment reduced the disease index of bacterial wilt by 19.18 % to 52.7 % compared with non-Si-treated plants. The uptake of Si was significantly increased in the Si-treated tomato plants, where the Si content was higher in the roots than that in the shoots. R. solanacearum inoculation resulted in a significant increase of soil urease activity and reduction of soil sucrase activity, but had no effects on soil acid phosphatase activity. Si supply significantly increased soil urease and soil acid phosphatase activity under pathogen-inoculated conditions. Compared with the non-inoculated treatment, R. solanacearum infection significantly reduced the amount of soil bacteria and actinomycetes by 52.5 % and 16.5 %, respectively, but increased the ratio of soil fungi/soil bacteria by 93.6 %. After R. solanacearum inoculation, Si amendments significantly increased the amount of soil bacteria and actinomycetes and reduced soil fungi/soil bacteria ratio by 53.6 %. The results suggested that Si amendment is an effective approach to control R. solanacearum. Moreover, Si-mediated resistance in tomato against R. solanacearum is associated with the changes of soil microorganism amount and soil enzyme activity.  相似文献   
966.
967.
The human cardiac troponin I (hcTnI) mutation R145W has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. Tg-R145W fibers showed an ∼ 13-16% increase in maximal Ca2+-activated force and ATPase activity compared to hcTnI wild-type transgenic mice. The force-generating cross-bridge turnover rate (g) and the energy cost (ATPase/force) were the same in all groups of fibers. Also, the Tg-R145W fibers showed a large increase in the Ca2+ sensitivity of both force development and ATPase. In intact fibers, the mutation caused prolonged force and intracellular [Ca2+] transients and increased time to peak force. Analysis of force and Ca2+ transients showed that there was a 40% increase in peak force in Tg-R145W muscles, which was likely due to the increased Ca2+ transient duration. The above cited results suggest that: (1) there would be an increase in resistance to ventricular filling during diastole resulting from the prolonged force and Ca2+ transients that would result in a decrease in ventricular filling (diastolic dysfunction); and (2) there would be a large (approximately 53%) increase in force during systole, which may help to partly compensate for diastolic dysfunction. These functional results help to explain the mechanisms by which these mutations give rise to a restrictive phenotype.  相似文献   
968.
mRNA差别显示技术及其在生命科学中的应用   总被引:2,自引:0,他引:2  
mRNA表达水平的变化决定细胞的功能状态,个体发育、细胞增殖分化与凋谢、生理刺激和药物治疗等过程,都会出现mRNA 表达水平的变化。阐明这种变化有助于揭示细胞生理过程的分子机制。该技术无需更多的背景资料,可快速有效地分离表达水平出现差别的基础,这些基因编剧编码的功能多肽在细胞生理过程中扮演着重要角色。  相似文献   
969.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   
970.
Bispecific immunoglobulin‐like antibodies capable of engaging multiple antigens represent a promising new class of therapeutic agents. Engineering of these molecules requires optimization of the molecular properties of one of the domain components. Here, we present a detailed crystallographic and computational characterization of the stabilization patterns in the lymphotoxin‐beta receptor (LTβR) binding Fv domain of an anti‐LTβR/anti‐TNF‐related apoptosis inducing ligand receptor‐2 (TRAIL‐R2) bispecific immunoglobulin‐like antibody. We further describe a new hierarchical structure‐guided approach toward engineering of antibody‐like molecules to enhance their thermal and chemical stability. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号