全文获取类型
收费全文 | 110526篇 |
免费 | 8456篇 |
国内免费 | 6970篇 |
专业分类
125952篇 |
出版年
2024年 | 215篇 |
2023年 | 1451篇 |
2022年 | 3239篇 |
2021年 | 5476篇 |
2020年 | 3577篇 |
2019年 | 4374篇 |
2018年 | 4353篇 |
2017年 | 3229篇 |
2016年 | 4599篇 |
2015年 | 6677篇 |
2014年 | 7863篇 |
2013年 | 8314篇 |
2012年 | 9960篇 |
2011年 | 8868篇 |
2010年 | 5444篇 |
2009年 | 4746篇 |
2008年 | 5585篇 |
2007年 | 4923篇 |
2006年 | 4370篇 |
2005年 | 3331篇 |
2004年 | 2933篇 |
2003年 | 2531篇 |
2002年 | 2205篇 |
2001年 | 2001篇 |
2000年 | 1860篇 |
1999年 | 1841篇 |
1998年 | 1017篇 |
1997年 | 1137篇 |
1996年 | 1017篇 |
1995年 | 919篇 |
1994年 | 942篇 |
1993年 | 667篇 |
1992年 | 993篇 |
1991年 | 838篇 |
1990年 | 613篇 |
1989年 | 559篇 |
1988年 | 485篇 |
1987年 | 411篇 |
1986年 | 388篇 |
1985年 | 390篇 |
1984年 | 211篇 |
1983年 | 197篇 |
1982年 | 137篇 |
1981年 | 114篇 |
1980年 | 107篇 |
1979年 | 115篇 |
1978年 | 78篇 |
1977年 | 60篇 |
1974年 | 74篇 |
1972年 | 62篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Jih-Kai Yeh Yuan-Chuan Hsiao Cian-Ruei Jian Chao-Hung Wang Ming-Shien Wen Chi-Tai Kuo Feng-Chun Tsai Victor Chien-Chia Wu Tien-Hsing Chen 《PloS one》2016,11(1)
Aims
The prognostic values of left ventricular ejection fraction (LVEF) during heart failure (HF) with acute decompensation or after optimal treatment have not been extensively studied. We hypothesized that posttreatment LVEF has superior predictive value for long-term prognosis than LVEF at admission does.Methods and Results
In Protocol 1, 428 acute decompensated HF (ADHF) patients with LVEF ≤35% in a tertiary medical center were enrolled and followed for a mean period of 34.7 ± 10.8 months. The primary and secondary end points were all-cause mortality and HF readmission, respectively. In total, 86 deaths and 240 HF readmissions were recorded. The predictive values of baseline LVEF at admission and LVEF 6 months posttreatment were analyzed and compared. The posttreatment LVEFs were predictive for future events (P = 0.01 for all-cause mortality, P < 0.001 for HF readmission), but the baseline LVEFs were not. In Protocol 2, the outcomes of patients with improved LVEF (change of LVEF: ≥+10%), unchanged LVEF (change of LVEF: –10% to +10%), and reduced LVEF (change of LVEF: ≤–10%) were analyzed and compared. Improved LVEF occurred in 171 patients and was associated with a superior long-term prognosis among all groups (P = 0.02 for all-cause mortality, P < 0.001 for HF readmission). In Protocol 3, independent predictors of improved LVEF were analyzed, and baseline LV end-diastolic dimension (LVEDD) was identified as a powerful predictor in ADHF patients (P < 0.001).Conclusions
In patients with ADHF, posttreatment LVEF but not baseline LVEF had prognostic power. Improved LVEF was associated with superior long-term prognosis, and baseline LVEDD identified patients who were more likely to have improved LVEF. Therefore, baseline LVEF should not be considered a relevant prognosis factor in clinical practice for patients with ADHF. 相似文献992.
993.
994.
Huiyan Guo Yucheng Wang Ping Hu Yanmin Wang Ying Jiang Chuanping Yang Chao Wang 《Tree Genetics & Genomes》2016,12(6):113
Secondary growth of stems is an important process for the radial increase of trees. To gain an insight into the molecular mechanisms underlying stem development from primary to secondary growth and to provide information for molecular research and breeding in Betula platyphylla (birch), the gene expression profiles of material from the first, third, and fifth internodes (IN) of 3-month-old seedlings were analyzed. Compared with the first IN, 177 genes were up-regulated and 157 genes down-regulated in the third IN; in the fifth IN, 180 genes were up-regulated and 275 genes were down-regulated. The expressions of 24 genes were up-regulated and 6 genes were down-regulated in the fifth IN relative to the third IN. The differentially expressed genes were annotated as having roles in cambium, xylem, and phloem development and formation; including cell wall expansion, cellulose biosynthesis, lignin biosynthesis and deposition, xylem extension, cell wall modification, and growth hormone responses. The expressions of genes related to cell wall expansion and cellulose biosynthesis in the primary cell wall were down-regulated in the third and fifth IN relative to the first IN. Genes involved in lignin biosynthesis, xylem extension, and cellulose synthesis in the secondary cell wall were up-regulated in the third and fifth IN relative to the first IN. These results described the patterns of gene expression during stem development in birch and provided candidate genes for further functional characterization. 相似文献
995.
Zidong Zhang Shuhui Chen Xiujie Ji Chen Qin Huimin Wang Peitao Xie Runhua Fan 《Plasmonics (Norwell, Mass.)》2016,11(2):373-379
Metamaterials are artificial periodic structures with negative permittivity and permeability. Several interesting properties can be obtained in metamaterials, such as negative index behavior, which can be used for building perfect lenses, cloaking, antennas, etc. As the metamaterial’s properties are determined by its structure, the key challenge is to reduce the fabrication cost of the periodic structure on the micrometer or nanometer scale for realistic applications. In this paper, we experimentally demonstrate a new one-step method for the fabrication of a large-area infrared metamaterial at extremely low cost. A metallic mesh is used as a shadow mask during the pulsed laser deposition (PLD) process to fabricate a FeNi/SiC/FeNi multilayer sandwich structure on Si substrate (cm2 level). The sample shows a strong absorption peak in the infrared frequency range, and the absorption intensity changes with the sample’s geometry. 相似文献
996.
Peigang Ji Liang Wang Jinghui Liu Ping Mao Ruichun Li Haitao Jiang Miao Lou Meng Xu Xiao Yu 《Journal of cellular biochemistry》2019,120(3):3259-3267
Ribosomal protein L34 (RPL34), belonging to the L34E family of ribosomal proteins, was reported to be dysregulated in several types of cancers and plays important roles in tumor progression. However, the expression and roles of RPL34 in human glioma remain largely unknown. Thus, the objective of this study was to investigate the expression and role of RPL34 in glioma. We report here that RPL34 is highly expressed in human glioma tissues and cell lines. Knockdown of RPL34 markedly inhibited the proliferation, migration, and invasion, as well as prevented the epithelial-mesenchymal transition phenotype in glioma cells. Further, mechanistic analysis showed that knockdown of RPL34 significantly downregulated the levels of p-JAK and p-STAT3 in glioma cells. Taken together, our findings indicated that knockdown of RPL34 inhibits the proliferation and migration of glioma cells through the inactivation of JAK/STAT3 signaling pathway. Thus, RPL34 may serve as a potential therapeutic target for the treatment of glioma. 相似文献
997.
Qun Liu Jianhui Chen Baolan Wang Yulong Zheng Yufeng Wan Yi Wang Liyang Zhou Shu Liu Gang Li Yi Yan 《Journal of cellular biochemistry》2019,120(5):8409-8418
Lung cancer is the leading cause of cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a major event that drives cancer progression. Here we aim to investigate the role of microRNA, miR-145, in regulating EMT of the highly invasive non–small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction analysis indicated that miR-145 was downregulated in cancer tissue compared with that in adjacent normal tissue. NSCLC cell lines, namely H1299, PC7, and SPCA-1, also demonstrated miR-145 downregulation, which is correlated well with their invasive ability, assessed by the Matrigel invasion assay. miR-145 overexpression resulted in downregulation of N-cadherin, and downregulation of vimentin and E-cadherin, suggesting a decreased EMT activity. TargetScan analysis predicted that a binding site exists between miR-145 and an oncogene, ZEB2, which was verified using the dual-luciferase assay. Alteration of miR-145 expression also induced inverse effects on ZEB2 expression, and a negative correlation exists between ZEB2 and miR-145 in human tissues. ZEB2 and miR-145 also exerted antagonizing effects on the invasion of NSCLC cells. Therefore, miR-145 is an important molecule in NSCLC that regulates cancer EMT through targeting ZEB2. 相似文献
998.
Hao Zhou Jin Wang Shunying Hu Hong Zhu Sam Toan Jun Ren 《Journal of cellular physiology》2019,234(4):5056-5069
Pathogenesis of cardiac microvascular ischemia-reperfusion (IR) injury is associated with excessive mitochondrial fission. However, the upstream mediator of mitochondrial fission remains obscure. Bax inhibitor 1 (BI1) is linked to multiple mitochondrial functions, and there have been no studies investigating the contribution of BI1 on mitochondrial fission in the setting of cardiac microvascular IR injury. This study was undertaken to establish the action of BI1 on the cardiac microvascular reperfusion injury and figure out whether BI1 sustained endothelial viability via inhibiting mitochondrial fission. Our observation indicated that BI1 was downregulated in reperfused hearts and overexpression of BI1 attenuated microvascular IR injury. Mechanistically, reperfusion injury elevated the levels of xanthine oxidase (XO), an effect that was followed by increased reactive oxygen species (ROS) production. Subsequently, oxidative stress mediated F-actin depolymerization and the latter promoted mitochondrial fission. Aberrant fission caused mitochondrial dysfunction and ultimately activated mitochondrial apoptosis in cardiac microvascular endothelial cells. By comparison, BI1 overexpression repressed XO expression and thus neutralized ROS, interrupting F-actin-mediated mitochondrial fission. The inhibitory effect of BI1 on mitochondrial fission sustained endothelial viability, reversed endothelial barrier integrity, attenuated the microvascular inflammation response, and maintained microcirculation patency. Altogether, we conclude that BI1 is essential in maintaining mitochondrial homeostasis and alleviating cardiac microvascular IR injury. Deregulated BI1 via the XO/ROS/F-actin pathways plays a causative role in the development of cardiac microvascular reperfusion injury. 相似文献
999.
Feiya Yang Lingquan Meng Panpan Han Dexi Chen Mingshuai Wang Yongguang Jiang Yanqiao Wu Yiling Wu Nianzeng Xing 《Journal of cellular physiology》2019,234(10):17570-17577
Chronic prostatitis is a common urological disease. The etiology of this disease and effective therapy for its treatment are yet to be elucidated. We investigated the functions of XLQ® in chronic nonbacterial prostatitis using a complete Freund's adjuvant-induced rat model. Prostates and blood samples were collected for further evaluation after oral gavage with XLQ ® or a vehicle for 4 weeks. The results showed that XLQ ® significantly decreased the prostate index, ameliorated the histopathologic changes, and reduced CD3+ and CD45+ cell infiltration in the prostate stroma. Further study showed that XLQ ® suppressed the expression of proinflammatory cytokines, such as interleukin (IL)-1β, IL-2, IL-6, IL-17A, monocyte chemoattractant protein-1, and tumor necrosis factor-α. XLQ ® showed a strong antioxidant capacity by enhancing the activities of antioxidative enzymes (e.g., total superoxide dismutase, catalase, and glutathione peroxidase) and decreasing the level of lipid peroxidation products (malondialdehyde). Moreover, XLQ ® can suppress the activation of nuclear factor-κB and P38-mitogen-activated protein kinase signaling pathways. In summary, XLQ ® has affirmative effects on chronic prostatitis, which could be attributed to its anti-inflammatory and antioxidative capacities. On the basis of these results, XLQ ® can be developed as an effective and safe therapy for chronic prostatitis. 相似文献
1000.