首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207062篇
  免费   27588篇
  国内免费   12975篇
  247625篇
  2024年   350篇
  2023年   2270篇
  2022年   5078篇
  2021年   8913篇
  2020年   7450篇
  2019年   10210篇
  2018年   10270篇
  2017年   8872篇
  2016年   11095篇
  2015年   14297篇
  2014年   16117篇
  2013年   17397篇
  2012年   18080篇
  2011年   16471篇
  2010年   11955篇
  2009年   10027篇
  2008年   10459篇
  2007年   8936篇
  2006年   7836篇
  2005年   6394篇
  2004年   5579篇
  2003年   4953篇
  2002年   4286篇
  2001年   3803篇
  2000年   3470篇
  1999年   3408篇
  1998年   1888篇
  1997年   2013篇
  1996年   1827篇
  1995年   1656篇
  1994年   1593篇
  1993年   1188篇
  1992年   1660篇
  1991年   1366篇
  1990年   1065篇
  1989年   885篇
  1988年   751篇
  1987年   610篇
  1986年   567篇
  1985年   574篇
  1984年   328篇
  1983年   312篇
  1982年   198篇
  1981年   135篇
  1980年   126篇
  1979年   132篇
  1978年   83篇
  1977年   62篇
  1974年   77篇
  1972年   65篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
162.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   
163.
164.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
165.
The goal of this study was to assess the relationship between Aβ deposition and white matter pathology (i.e., white matter hyperintensities, WMH) on microstructural integrity of the white matter. Fifty-seven participants (mean age: 78±7 years) from an ongoing multi-site research program who spanned the spectrum of normal to mild cognitive impairment (Clinical dementia rating 0–0.5) and low to high risk factors for arteriosclerosis and WMH pathology (defined as WMH volume >0.5% total intracranial volume) were assessed with positron emission tomography (PET) with Pittsburg compound B (PiB) and magnetic resonance and diffusion tensor imaging (DTI). Multivariate analysis of covariance were used to investigate the relationship between Aβ deposition and WMH pathology on fractional anisotropy (FA) from 9 tracts of interest (i.e., corona radiata, internal capsule, cingulum, parahippocampal white matter, corpus callosum, superior longitudinal, superior and inferior front-occipital fasciculi, and fornix). WMH pathology was associated with reduced FA in projection (i.e., internal capsule and corona radiate) and association (i.e., superior longitudinal, superior and inferior fronto-occipital fasciculi) fiber tracts. Aβ deposition (i.e., PiB positivity) was associated with reduced FA in the fornix and splenium of the corpus callosum. There were interactions between PiB and WMH pathology in the internal capsule and parahippocampal white matter, where Aβ deposition reduced FA more among subjects with WMH pathology than those without. However, accounting for apoE ε4 genotype rendered these interactions insignificant. Although this finding suggests that apoE4 may increase amyloid deposition, both in the parenchyma (resulting in PiB positivity) and in blood vessels (resulting in amyloid angiopathy and WMH pathology), and that these two factors together may be associated with compromised white matter microstructural integrity in multiple brain regions, additional studies with a longitudinal design will be necessary to resolve this issue.  相似文献   
166.
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through “gain-of-function” and “loss-of-function” strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.  相似文献   
167.
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exotoxin A (PE), which has a receptor binding and membrane translocation domain, and the hyperthermophilic archaeal histone (HPhA), which has the DNA binding ability. First, we constructed and expressed the rPE-HPhA fusion protein. We then examined the cytotoxicity and the DNA binding ability of rPE-HPhA. We further assessed the efficiency of transfection of the pEGF-C1 plasmid DNA to CHO cells by the rPE-HPhA system, in comparison to the cationic liposome method. The results showed that the transfection efficiency of rPE-HPhA was higher than that of cationic liposomes. In addition, the rPE-HPhA gene delivery system is non-specific to DNA sequence, topology or targeted cell type. Thus, the rPE-HPhA system can be used for delivering genes of interest into mammalian cells and has great potential to be applied for gene therapy.  相似文献   
168.
169.
170.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号