首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7706篇
  免费   676篇
  国内免费   867篇
  2024年   33篇
  2023年   155篇
  2022年   338篇
  2021年   451篇
  2020年   335篇
  2019年   467篇
  2018年   387篇
  2017年   271篇
  2016年   387篇
  2015年   523篇
  2014年   592篇
  2013年   622篇
  2012年   681篇
  2011年   583篇
  2010年   360篇
  2009年   331篇
  2008年   362篇
  2007年   314篇
  2006年   293篇
  2005年   210篇
  2004年   240篇
  2003年   209篇
  2002年   166篇
  2001年   158篇
  2000年   117篇
  1999年   94篇
  1998年   74篇
  1997年   55篇
  1996年   82篇
  1995年   64篇
  1994年   50篇
  1993年   27篇
  1992年   42篇
  1991年   32篇
  1990年   31篇
  1989年   21篇
  1988年   24篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
排序方式: 共有9249条查询结果,搜索用时 15 毫秒
141.
This article reports on the geometric optimisation of a T-shaped biochip microchannel fluidic separator aiming to maximise the separation efficiency of plasma from blood through the improvement of the unbalanced separation performance among different channel bifurcations. For this purpose, an algebraic analysis is firstly implemented to identify the key parameters affecting fluid separation. A numerical optimisation is then carried out to search the key parameters for improved separation performance of the biochip. Three parameters, the interval length between bifurcations, the main channel length from the outlet to the bifurcation region and the side channel geometry, are identified as the key characteristic sizes and defined as optimisation variables. A balanced flow rate ratio between the main and side channels, which is an indication of separation effectiveness, is defined as the objective. It is found that the degradation of the separation performance is caused by the unbalanced channel resistance ratio between the main and side channel routes from bifurcations to outlets. The effects of the three key parameters can be summarised as follows: (a) shortening the interval length between bifurcations moderately reduces the differences in the flow rate ratios; (b) extending the length of the main channel from the main outlet is effective for achieving a uniformity of flow rate ratio but ineffective in changing the velocity difference of the side channels and (c) decreasing the lengths of side channels from upstream to downstream is effective for both obtaining a uniform flow rate ratio and reducing the differences in the flow velocities between the side branch channels. An optimisation process combining the three parameters is suggested as this integration approach leads to fast convergent process and also offers flexible design options for satisfying different requirements.  相似文献   
142.
This paper investigates the effectiveness of using curved constrictions in the bifurcation region of T-type fluid separators for promoting flow development in the intervals between bifurcations. A design of biofluid separator is proposed and a mathematical analysis and a numerical simulation of the blood flow in microchannels are conducted. The design is based on a modification of an existing T-shaped biochip device which consists of a main channel and a series of perpendicularly positioned side channels. By means of bifurcation effect, the blood is separated into plasma concentration flow from the side channels and blood cell concentration flow from the main channel. In this design, curved constrictions are inserted between bifurcations to replace the original straight channel section, so that the constriction and curved channel effects can be induced apart from the existing bifurcation effect. The mathematical analysis is aimed to the flow field and shear stress of the blood fluid in the microchannel geometries employed in the current design, including bifurcation, constriction and curved channel. The numerical simulation and mathematical analysis result in agreed conclusions, giving some insights into the importance of the relevant geometries in promoting biofluid separation. The main results can be summarised as follows: (i) the constrictions can largely increase the shear stress by the ratio of square of the reduction of the sections between the constriction and parent main channel. (ii) The curved channel intervals can induce centrifugal force, smoothly transit the flow field and increase the chances depleting fluid from the cell-free layer. (iii) The thickness of the boundary layer skimmed into the side channels from the main channel is decreased in this design and can be controlled, falling into the cell-free layer region by adjusting the geometry of the side channels.  相似文献   
143.
A finite element model of a single cell was created and used to compute the biophysical stimuli generated within a cell under mechanical loading. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of atomic force microscopy indentation was performed and results showed a force/indentation simulation with the range of experimental results. A parametric analysis of both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age) was performed. Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain as compared with young cells, but the difference, surprisingly, is very small and may not be measurable experimentally. Ageing is predicted to have a more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models; correspondence between computed and measured force/displacement behaviours provides a high-level validation of the model. Regarding the effect of ageing, the models suggest only small, although possibly physiologically significant, differences in internal biophysical stimuli between normal and aged cells.  相似文献   
144.
145.
146.
Abstract

In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10?nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.  相似文献   
147.
Three novel p‐hydroxybenzoic acid derivatives (HSOP, HSOX, HSCP) were synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfamonomethoxine sodium, sulfamethoxazole and sulfachloropyridazine sodium) and characterized by elemental analysis, HNMR and MS. Interactions between derivatives and bovine serum albumin (BSA) were studied by fluorescence quenching spectra, UV–vis absorption spectra and time‐resolved fluorescence spectra. Based on fluorescence quenching calculation and Förster's non‐radioactive energy transfer theory, the values of the binding constants, basic thermodynamic parameters and binding distances were obtained. Experimental results indicated that the three derivatives had a strong ability to quench fluorescence from BSA and that the binding reactions of the derivatives with BSA were a static quenching process. Thermodynamic parameters showed that binding reactions were spontaneous and exothermic and hydrogen bond and van der Waals force were predominant intermolecular forces between the derivatives and BSA. Synchronous fluorescence spectra suggested that HSOX and HSCP had little effect on the microenvironment and conformation of BSA in the binding reactions but the microenvironments around tyrosine residues were disturbed and polarity around tyrosine residues increased in the presence of HSOP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
148.
Regulators of G‐protein Signaling (Rgs) proteins are the members of a multigene family of GTPase‐accelerating proteins (GAP) for the Galpha subunit of heterotrimeric G‐proteins. Rgs proteins play critical roles in the regulation of G protein couple receptor (GPCR) signaling in normal physiology and human diseases such as cancer, heart diseases, and inflammation. Rgs12 is the largest protein of the Rgs protein family. Some in vitro studies have demonstrated that Rgs12 plays a critical role in regulating cell differentiation and migration; however its function and mechanism in vivo is largely unknown. Here, we generated a floxed Rgs12 allele (Rgs12flox/flox) in which the exon 2, containing both PDZ and PTB_PID domains of Rgs12, was flanked with two loxp sites. By using the inducible Mx1‐cre and Poly I:C system to specifically delete Rgs12 at postnatal 10 days in interferon‐responsive cells including monocyte and macrophage cells, we found that Rgs12 mutant mice had growth retardation with the phenotype of increased bone mass. We further found that deletion of Rgs12 reduced osteoclast numbers and had no significant effect on osteoblast formation. Thus, Rgs12flox/flox conditional mice provide a valuable tool for in vivo analysis of Rgs12 function and mechanism through time‐ and cell‐specific deletion of Rgs12. genesis 51:201–209, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
149.
150.
Highlights? Modified small-scale ChIP-seq method applicable to small number of cells ? Genome-wide maps of H3K4me3, H3K27me3, H3K27ac, and H2BK20ac of germ cells in vivo ? Identification of active and inactive regulatory elements in germ cells in vivo ? Germ cell H3K27me3 regions are enriched for retrotransposon repeats  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号