首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19152篇
  免费   1407篇
  国内免费   1517篇
  22076篇
  2024年   48篇
  2023年   329篇
  2022年   658篇
  2021年   1088篇
  2020年   670篇
  2019年   905篇
  2018年   803篇
  2017年   558篇
  2016年   876篇
  2015年   1153篇
  2014年   1457篇
  2013年   1520篇
  2012年   1808篇
  2011年   1567篇
  2010年   989篇
  2009年   847篇
  2008年   944篇
  2007年   809篇
  2006年   659篇
  2005年   580篇
  2004年   484篇
  2003年   436篇
  2002年   388篇
  2001年   285篇
  2000年   291篇
  1999年   303篇
  1998年   195篇
  1997年   199篇
  1996年   188篇
  1995年   151篇
  1994年   136篇
  1993年   96篇
  1992年   140篇
  1991年   114篇
  1990年   100篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumours, including non‐small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of their specific association with NSCLC have not been fully elucidated. Here, we report that a cytoplasmic lncRNA, DUXAP9‐206 is overexpressed in NSCLC cells and closely related to NSCLC clinical features and poor patient survival. We reveal that DUXAP9‐206 induced NSCLC cell proliferation and metastasis by directly interacting with Cbl‐b, an E3 ubiquitin ligase, and reducing the degradation of epidermal growth factor receptor (EGFR) and thereby augmenting EGFR signaling in NSCLC. Notably, correlations between DUXAP9‐206 and activated EGFR signaling were also validated in NSCLC patient specimens. Collectively, our findings reveal the novel molecular mechanisms of DUXAP9‐206 in mediating the progression of NSCLC and DUXAP9‐206 may serve as a potential target for NSCLC therapy.  相似文献   
922.
Achilles tendon injury is one of the challenges of sports medicine, the aetiology of which remains unknown. For a long time, estrogen receptor β (ERβ) has been known as a regulating factor of the metabolism in many connective tissues, such as bone, muscle and cartilage, but little is known about its role in tendon. Recent studies have implicated ERβ as involved in the process of tendon healing. Tendon‐derived stem cells (TDSCs) are getting more and more attention in tendon physiological and pathological process. In this study, we investigated how ERβ played a role in Achilles tendon healing. Achilles tendon injury model was established to analyse how ERβ affected on healing process in vivo. Cell proliferation assay, Western blots, qRT‐PCR and immunocytochemistry were performed to investigate the effect of ERβ on TDSCs. Here, we showed that ERβ deletion in mice resulted in inferior gross appearance, histological scores and, most importantly, increased accumulation of adipocytes during the early tendon healing which involved activation of peroxisome proliferator‐activated receptor γ (PPARγ) signalling. Furthermore, in vitro results of ours confirmed that the abnormity might be the result of abnormal TDSC adipogenic differentiation which could be partially reversed by the treatment of ERβ agonist LY3201. These data revealed a role of ERβ in Achilles tendon healing for the first time, thereby providing a new target for clinical treatment of Achilles tendon injury.  相似文献   
923.
Currently, in addition to the electroactive non‐noble metal water‐splitting electrocatalysts, a scalable synthetic route and simple activity enhancement strategy is also urgently needed. In particular, the well‐controlled synthesis of the well‐recognized metal–metal nanointer face in a single step remains a key challenge. Here, the synthesis of Cu‐supported Ni4Mo nanodots on MoOx nanosheets (Ni4Mo/MoOx) with controllable Ni4Mo particle size and d‐band structure is reported via a facile one‐step electrodeposition process. Density functional theory (DFT) calculations reveal that the active open‐shell effect from Ni‐3d‐band optimizes the electronic configuration. The Cu‐substrate enables the surface Ni–Mo alloy dots to be more electron‐rich, forming a local connected electron‐rich network, which boosts the charge transfer for effective binding of O‐related species and proton–electron charge exchange in the hydrogen evolution reaction. The Cu‐supported Ni4Mo/MoOx shows an ultralow overpotential of 16 mV at a current density of 10 mA cm?2 in 1 m KOH, demonstrating the smallest overpotential, at loadings as low as 0.27 mg cm?2, among all non‐noble metal catalysts reported to date. Moreover, an overpotential of 105 mV allows it to achieve a current density of 250 mA cm?2 in 70 °C 30% KOH, a remarkable performance for alkaline hydrogen evolution with competitive potential for applications.  相似文献   
924.
Continually phytochemical study of the roots of Heracleum dissectum had led to the isolation of three previously undescribed polyacetylene glycosides ( 1 – 3 ), together with seven known compounds, including one polyacetylene ( 8 ) and six coumarins ( 4 – 7 and 9 – 10 ) using diverse chromatographic methods. The structures of these three new compounds were characterized and identified as deca‐4,6‐diyn‐1‐yl β‐d ‐glucopyranosyl‐(1→6)‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranoside ( 1 ), (8Z)‐dec‐8‐ene‐4,6‐diyn‐1‐yl β‐d ‐glucopyranosyl‐(1→6)‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranoside ( 2 ), and (8E)‐dec‐8‐ene‐4,6‐diyn‐1‐yl β‐d ‐glucopyranosyl‐(1→6)‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranoside ( 3 ) based on their physicochemical properties and extensive analyses of various spectroscopic data. Their triglycerides accumulating activities were assayed and the results showed that the three new polyacetylene glycosides ( 1 – 3 ) exhibited triglyceride accumulating activities in 3T3‐L1 adipocytes.  相似文献   
925.
Antitumor activity of triterpenoid and its derivatives has attracted great attention recently. Our previous efforts led to the discovery of a series of NO‐donor betulin derivatives with potent antitumor activity. Herein, we prepared eight compounds derived from ursolic acid (UA). All the compounds were evaluated for their in vitro cytotoxicity against four human cancer cell lines (HepG‐2, MCF‐7, HT‐29 and A549). Among the compounds tested, compound 4a was found to be most active against HT‐29 (IC50=4.28 μm ). Further biological assays demonstrated that compound 4a could induce cell cycle arrest at G1 phase and apoptosis in a dose‐dependent manner. In addition, compound 4a was found to upregulate pro‐apoptotic Bax, p53 and downregulate anti‐apoptotic Bcl‐2. All these results suggested that compound 4a is a potential candidate drug for the therapy of colon cancer.  相似文献   
926.
Two new C13‐polyketides, aureonitols A and B ( 1 and 2 ), along with five known compounds ( 3 – 7 ), were isolated from the solid fermentation culture of the plant endophytic fungus Chaetomium globosum from the aerial parts of Salvia miltiorrhiza. The structures and absolute configurations of 1 and 2 were determined by comprehensive spectroscopic data analysis and computed methods. Compound 5 was found to display the remarkable antimicrobial activities against four multidrug‐resistant bacteria (Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, and Staphylococcus epidermidis) with MIC values of 3.13–6.25 μg/mL (ciprofloxacin: 0.78–1.56 μg/mL), and also against all tested fungal strains with MIC values of 3.13–25 μg/mL (ketoconazole: 0.78–12.50 μg/mL).  相似文献   
927.
Polymer dielectrics such as poly(vinylidene fluoride) (PVDF) have drawn tremendous attention in high energy density capacitors because of their high dielectric constant and ease of processing. However, the discharged energy density attained with these materials is restrained by the inferior breakdown strength and electric resistivity. Herein, PVDF composite films with a nanosized interlayer of assembled boron nitride nanosheets (BNNSs) that is aligned along the in‐plane direction are prepared through a simple layer‐by‐layer solution‐casting process. Compared to the pristine PVDF, the composite films show remarkably suppressed leakage current, resulting in a high breakdown strength and a superior energy density which are 136% and 275%, respectively, that of the pristine PVDF. The experimental results and computational simulations reveal that the compact and successive interlayer of assembled BNNSs can largely mitigate the local field distortion and block the propagation of electrical treeing, which is advantageous over the conventional dielectric polymer nanocomposites. Notably, unlike the previous dielectric polymer nanocomposites that are usually incorporated with a high volume fraction of nanofillers, i.e., 5–10 vol%, the present composites contain only an extremely low content of nanfillers, e.g., 0.16 vol%. These findings offer a novel paradigm for fabricating high energy density and high efficiency polymer dielectrics.  相似文献   
928.
Exploring new structure prototypes and phases by material design, especially anode materials, is essential to develop high‐performance Na‐ion batteries. This study proposes a new anode, Na2Cu2.09O0.50S2, with a 1D crystal structure and outstanding Na storage performance. In view of the crystal structure of Na2Cu2.09O0.50S2, [Cu4S4] chains act as electrically conducting units enabling conductivity as high as 0.5 S cm?1. The residual Na4[CuO] chains act as ionically conducting units forming rich channels for the fast conduction of Na ions as well as maintaining the structural stability even after Na ion extraction. Additional ball milling on the as‐prepared Na2Cu2.09O0.50S2 significantly decreases its grain size, achieving a capacity of 588 mA h g?1 with a high initial Coulombic efficiency of 93% at 0.2 A g?1. Moreover, the Na2Cu2.09O0.50S2 anode demonstrates outstanding rate capability (408 mA h g?1 at 2 A g?1) and extending cyclic performance (82% of capacity retention after 400 cycles). The general structural design idea based on functional units may offer a new avenue to new electrode materials.  相似文献   
929.
MXene, a new class of 2D materials, has gained significant attention owing to its attractive electrical conductivity, tunable work function, and metallic nature for wide range of applications. Herein, delaminated few layered Ti3C2Tx MXene contacted Si solar cells with a maximum power conversion efficiency (PCE) of ≈11.5% under AM1.5G illumination are demonstrated. The formation of an Ohmic junction of the metallic MXene to n+‐Si surface efficiently extracts the photogenerated electrons from n+np+‐Si, decreases the contact resistance, and suppresses the charge carrier recombination, giving rise to excellent open‐circuit voltage and short‐circuit current density. The rapid thermal annealing process further improves the electrical contact between Ti3C2Tx MXene and n+‐Si surface by reducing sheet resistance, increasing electrical conductivity, and decreasing cell series resistance, thus leading to a remarkable improvement in fill factor and overall PCE. The work demonstrated here can be extended to other MXene compositions as potential electrodes for developing highly performing solar cells.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号