首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5439篇
  免费   427篇
  国内免费   277篇
  6143篇
  2024年   6篇
  2023年   62篇
  2022年   142篇
  2021年   253篇
  2020年   175篇
  2019年   208篇
  2018年   189篇
  2017年   135篇
  2016年   211篇
  2015年   341篇
  2014年   384篇
  2013年   416篇
  2012年   505篇
  2011年   446篇
  2010年   270篇
  2009年   244篇
  2008年   269篇
  2007年   244篇
  2006年   189篇
  2005年   175篇
  2004年   167篇
  2003年   121篇
  2002年   108篇
  2001年   107篇
  2000年   93篇
  1999年   99篇
  1998年   40篇
  1997年   51篇
  1996年   41篇
  1995年   38篇
  1994年   29篇
  1993年   33篇
  1992年   41篇
  1991年   37篇
  1990年   46篇
  1989年   36篇
  1988年   23篇
  1987年   24篇
  1986年   13篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1979年   14篇
  1978年   8篇
  1973年   9篇
  1972年   6篇
  1971年   9篇
  1968年   5篇
排序方式: 共有6143条查询结果,搜索用时 0 毫秒
91.
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. Despite advances in modern therapy, patients with relapsed or metastatic disease have a very poor clinical prognosis. Fibroblast Growth Factor Receptor 4 (FGFR4) is a cell surface tyrosine kinase receptor that is involved in normal myogenesis and muscle regeneration, but not commonly expressed in differentiated muscle tissues. Amplification and mutational activation of FGFR4 has been reported in RMS and promotes tumor progression. Therefore, FGFR4 is a tractable therapeutic target for patients with RMS. In this study, we used a chimeric Ba/F3 TEL-FGFR4 construct to test five tyrosine kinase inhibitors reported to specifically inhibit FGFRs in the nanomolar range. We found ponatinib (AP24534) to be the most potent FGFR4 inhibitor with an IC50 in the nanomolar range. Ponatinib inhibited the growth of RMS cells expressing wild-type or mutated FGFR4 through increased apoptosis. Phosphorylation of wild-type and mutated FGFR4 as well as its downstream target STAT3 was also suppressed by ponatinib. Finally, ponatinib treatment inhibited tumor growth in a RMS mouse model expressing mutated FGFR4. Therefore, our data suggests that ponatinib is a potentially effective therapeutic agent for RMS tumors that are driven by a dysregulated FGFR4 signaling pathway.  相似文献   
92.

Objective

The evidence on whether there is work stress related dysregulation of the hypothalamic-pituitary-adrenal axis is equivocal. This study assessed the relation between work stress and diurnal cortisol rhythm in a large-scale occupational cohort, the Whitehall II study.

Methods

Work stress was assessed in two ways, using the job-demand-control (JDC) and the effort-reward-imbalance (ERI) models. Salivary cortisol samples were collected six times over a normal day in 2002–2004. The cortisol awakening response (CAR) and diurnal cortisol decline (slope) were calculated.

Results

In this large occupational cohort (N = 2,126, mean age 57.1), modest differences in cortisol patterns were found for ERI models only, showing lower reward (β = −0.001, P-value = 0.04) and higher ERI (β = 0.002, P-value = 0.05) were related to a flatter slope in cortisol across the day. Meanwhile, moderate gender interactions were observed regarding CAR and JDC model.

Conclusions

We conclude that the associations of work stress with cortisol are modest, with associations apparent for ERI model rather than JDC model.  相似文献   
93.
Recent studies have demonstrated the possible function of miR-139-5p in tumorigenesis. However, the exact mechanism of miR-139-5p in cancer remains unclear. In this study, the association of miR-139-5p expression with esophageal squamous cell carcinoma (ESCC) was evaluated in 106 pairs of esophageal cancer and adjacent non-cancerous tissue from ESCC patients. The tumor suppressive features of miR-139-5p were measured by evaluating cell proliferation and cell cycle state, migratory activity and invasion capability, as well as apoptosis. Luciferase reporter assay and Western blot analysis were performed to determine the target gene regulated by miR-139-5p. The mRNA level of NR5A2, the target gene of miR-139-5p, was determined in ESCC patients. Results showed that reduced miR-139-5p level was associated with lymph node metastases of ESCC. MiR-139-5p was investigated to induce cell cycle arrest in the G0/G1 phase and to suppress the invasive capability of esophageal carcinoma cells by targeting the 3′UTR of oncogenic NR5A2. Cyclin E1 and MMP9 were confirmed to participate in cell cycle arrest and invasive suppression induced by NR5A2, respectively. Pearson correlation analysis further confirmed the significantly negative correlation between miR-139-5p and NR5A2 expression. The results suggest that miR-139-5p exerts a growth- and invasiveness-suppressing function in human ESCCs, which demonstrates that miR-139-5p is a potential biomarker for early diagnosis and prognosis and is a therapeutic target for ESCC.  相似文献   
94.
95.
Terpinen-4-ol has high fumigating activity to stored-grain pests including Tribolium confusum. To understand the detoxification of terpinen-4-ol in insects, proteomic analysis was performed to identify related proteins and pathways in response to terpinen-4-ol fumigation in T. confusum. By using isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy, 4,618 proteins were obtained from T. confusum adults in the present study. Comparative proteomic analysis showed that 148 proteins were upregulated and 137 proteins were downregulated in beetles under the LC50 of terpinen-4-ol treatment for 24 hr. According to functional classifications, differentially expressed proteins (DEPs) were enriched in xenobiotic metabolism pathways. In the detoxification pathway, the levels of 25 cytochrome P450s, 5 glutathione S-transferases, and 2 uridine diphosphate (UDP)-glucuronosyltransferases were changed, most of which were upregulated in T. confusum exposed to terpinen-4-ol. The results indicated that terpinen-4-ol was potentially metabolized and detoxified by enzymes like P450s in T. confusum.  相似文献   
96.
Breast cancer is a popularly diagnosed malignant tumor. Genomic profiling studies suggest that breast cancer is a disease with heterogeneity. Chemotherapy is one of the chief means to treat breast cancer, while its responses and clinical outcomes vary largely due to the conventional clinicopathological factors and inherent chemosensitivity of breast cancer. Using the least absolute shrinkage and selection operator (LASSO) Cox regression model, our study established a multi-mRNA-based signature model and constructed a relative nomogram in predicting distant-recurrence-free survival for patients receiving surgery and following chemotherapy. We constructed a signature of eight mRNAs (IPCEF1, SYNDIG1, TIGIT, SPESP1, C2CD4A, CLCA2, RLN2, and CCL19) with the LASSO model, which was employed to separate subjects into groups with high- and low-risk scores. Obvious differences of distant-recurrence-free survival were found between these two groups. This eight-mRNA-based signature was independently associated with the prognosis and had better prognostic value than classical clinicopathologic factors according to multivariate Cox regression results. Receiver operating characteristic results demonstrated excellent performance in diagnosing 3-year distant-recurrence by the eight-mRNA signature. A nomogram that combined both the eight-mRNA-based signature and clinicopathological risk factors was constructed. Comparing with an ideal model, the nomograms worked well both in the training and validation sets. Through the results that the eight-mRNA signature effectively classified patients into low- and high-risk of distant recurrence, we concluded that this eight-mRNA-based signature played a promising predictive role in prognosis and could be clinically applied in breast cancer patients receiving adjuvant chemotherapy.  相似文献   
97.
98.
The proinflammatory cytokine interleukin 17 (IL-17) is considered to play a crucial role in diverse human tumors; however, its role in disease progression remains controversial. This study investigated the cellular source and distribution of IL-17 in esophageal squamous cell carcinoma (ESCC) in situ and determined its prognostic value. Immunohistochemistry, immunofluorescence and immunoelectron microscopy were used to identify IL-17-expressing cells in ESCC tissues, paying particular attention to their anatomic localization. Kaplan–Meier analysis and Cox proportional hazards regression models were applied to estimate overall survival in 215 ESCC patients with long-term follow-up (>10 years). The results showed that mast cells, but not T cells or macrophages, were the predominant cell type expressing IL-17 in ESCC tissues. Unexpectedly, these IL-17+ cells were highly enriched in the muscularis propria rather than the corresponding tumor nest (p < 0.0001). The density of IL-17+ cells in muscularis propria was inversely associated with tumor invasion (p = 0.016) and served as an independent predictor of favorable survival (p = 0.007). Moreover, the levels of IL-17+ cells in muscularis propria were positively associated with the density of effector CD8+ T cells and activated macrophages in the same area (both p < 0.0001). This finding suggested that mast cells may play a significant role in tumor immunity by releasing IL-17 at a previously unappreciated location, the muscularis propria, in ESCC tissues, which could serve as a potential prognostic marker and a novel therapeutic target for ESCC.  相似文献   
99.
Idiopathic basal ganglia calcification (IBGC) is a rare neuropsychiatric disorder characterized by bilateral and symmetric cerebral calcifications. Recently, SLC20A2 was identified as a causative gene for familial IBGC, and three mutations were reported in a northern Chinese population. Here, we aimed to explore the mutation spectrum of SLC20A2 in a southern Chinese population. Sanger sequencing was employed to screen mutations within SLC20A2 in two IBGC families and 14 sporadic IBGC cases from a southern Han Chinese population. Four novel mutations (c.82G > A p.D28N, c.185T > C p.L62P, c.1470_1478delGCAGGTCCT p.Q491_L493del and c.935-1G > A) were identified in two families and two sporadic cases, respectively; none were detected in 200 unrelated controls. No mutation was found in the remaining 12 patients. Different mutations may result in varied phenotypes, including brain calcification and clinical manifestations. Our study supports the hypothesis that SLC20A2 is a causative gene of IBGC and expands the mutation spectrum of SLC20A2, which facilitates the understanding of the genotype–phenotype correlation of IBGC.  相似文献   
100.
It is generally accepted that most gastrointestinal diseases are probably caused by the bacterial pathogen Helicobacter pylori (H. pylori). In this study we have focused on the comparison of protein expression profiles of H. pylori grown under normal and high-salt conditions by a proteomics approach. We have identified about 190 proteins whose expression levels changed after growth at high salt concentration. Among these proteins, neutrophil-activating protein (NapA) was found to be consistently up-regulated under osmotic stress brought by high salts. We have investigated the effect of high salt on secondary and tertiary structures of NapA by circular dichroism spectroscopy followed by analytical ultracentrifugation to monitor the change of quaternary structure of recombinant NapA with increasing salt concentration. The loss of iron-binding activity of NapA coupled with noticeable energetic variation in protein association of NapA as revealed by isothermal titration calorimetry was found under high salt condition. The phylogenetic tree analysis based on sequence comparison of 16 protein sequences encompassing NapA proteins and ferritin of H. pylori and other prokaryotic organisms pointed to the fact that all H. pylori NapA proteins of human origin are more homologous to NapA of Helicobacter genus than to other bacterial NapA. Based on computer modeling, NapA proteins from H. pylori of human isolates are found more similar to ferritin from H. pylori than to NapA from other species of bacteria. Taken together, these results suggested that divergent evolution of NapA and ferritin possessing dissimilar and diverse sequences follows a path distinct from that of convergent evolution of NapA and ferritin with similar dual functionality of iron-binding and ferroxidase activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号