首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2823篇
  免费   163篇
  国内免费   4篇
  2023年   9篇
  2022年   21篇
  2021年   36篇
  2020年   30篇
  2019年   47篇
  2018年   70篇
  2017年   46篇
  2016年   76篇
  2015年   131篇
  2014年   152篇
  2013年   193篇
  2012年   249篇
  2011年   247篇
  2010年   161篇
  2009年   122篇
  2008年   195篇
  2007年   192篇
  2006年   132篇
  2005年   148篇
  2004年   156篇
  2003年   85篇
  2002年   88篇
  2001年   70篇
  2000年   74篇
  1999年   59篇
  1998年   15篇
  1997年   16篇
  1996年   16篇
  1995年   21篇
  1994年   10篇
  1993年   7篇
  1992年   16篇
  1991年   20篇
  1990年   10篇
  1989年   8篇
  1988年   8篇
  1987年   9篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1980年   5篇
  1979年   8篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1970年   1篇
  1969年   4篇
  1967年   1篇
  1966年   1篇
排序方式: 共有2990条查询结果,搜索用时 31 毫秒
81.
Abstact Polar organisms should have mechanisms to survive the extremely cold environment. Four genes encoding cold-shock proteins, which are small, cold-induced bacterial proteins, have been cloned from the Antarctic bacterium Streptomyces sp. AA8321. Since the specific functions of any polar bacterial or Streptomyces cold-shock proteins have not yet been determined, we examined the role of cold-shock protein A from Streptomyces sp. AA8321 (CspASt). Gel filtration chromatography showed that purified CspASt exists as a homodimer under physiological conditions, and gel shift assays showed that it binds to single-stranded, but not double-stranded, DNA. Overexpression of CspASt in Escherichia coli severely impaired the ability of the host cells to form colonies, and the cells developed an elongated morphology. Incorporation of a deoxynucleoside analogue, 5-bromo-2′-deoxyuridine, into newly synthesized DNA was also drastically diminished in CspASt-overexpressing cells. These results suggest that CspASt play a role in inhibition of DNA replication during cold-adaptation.  相似文献   
82.
The Wellcome Trust Conference Centre at Hinxton, UK, was the meeting place of the 7th HUPO Brain Proteome Project Workshop entitled "High Performance Proteomics". It started on Wednesday, March 7, 2007 with a steering committee meeting followed by a two days series of talks dealing with the standardization and handling of tissues, body fluids as well as of proteomics data. The presentation and accompanying vivid discussions created a picture of actual strategies and standards in recent proteomics.  相似文献   
83.
Park SH  Oh HB  Seong WK  Kim CW  Cho SY  Yoo CK 《Proteomics》2007,7(20):3743-3758
Bacillus anthracis is a gram-positive bacterial organism responsible for anthrax. This organism has two pathogenic plasmids: pX01 and pX02. The genetic function of pX01, which comprises about 198 kb, is not known, except for a region called the pathogenic island, which contains three genes-pag, lef, and cya-that code for three toxic proteins. A 2-D difference gel electrophoresis (2-D DIGE) system was used to verify the existence of proteins controlled by the pX01 plasmid, and protein regulation data were obtained using DeCyder software. A total of 1728 proteins were identified in the wild-type strain of this organism and 1684 in the pX01 plasmid. Twenty-seven of these proteins disappeared and eight appeared when the pX01 plasmid was removed. An additional 52 proteins were downregulated and 15 were upregulated when this plasmid was removed. A total of 102 proteins have been identified using the MALDI-TOF method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 15 in the processing of genetic information, and five in the processing of extracellular information. Another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly the B. anthracis derivative H9041. Bacterial growth differed between pX01+/pX02+ B. anthracis and its pX01-/pX02+ derivative as did the cytotoxicity of macrophages infected by pX01+/pX02+ B. anthracis and the pX01-pX02+ derivative. We also found that S100B protein levels increased in the host infected with pX01+/pX02+ B. anthracis or its pX01-/pX02+ derivative. These data suggest that the pX01 plasmid plays a key role in the regulation of protein functions in B. anthracis.  相似文献   
84.
85.
Bladder cancer is one of the most common tumors of the genitourinary tract. Here, we use phage display to identify a peptide that targets bladder tumor cells. A phage library containing random peptides was screened for binding to cells from human bladder tumor xenografts. Phage clones were further selected for binding to a bladder tumor cell line in culture. Six clones displaying the consensus sequence CXNXDXR(X)/(R)C showed selective binding to cells from primary human bladder cancer tissue. Of these, the CSNRDARRC sequence was selected for further study as a synthetic peptide. Fluorescein-conjugated CSNRDARRC peptide selectively bound to frozen sections of human bladder tumor tissue, whereas only negligible binding to normal bladder tissue was observed. When the fluorescent peptide was introduced into the bladder lumen, in a carcinogen-induced rat tumor model, it selectively bound to tumor epithelium. Moreover, when the peptide was intravenously injected into the tail vein, it homed to the bladder tumor but was not detectable in normal bladder and control organs. Next, we examined whether the peptide can detect tumor cells in urine. The fluorescent peptide bound to cultured bladder tumor cells but not to other types of tumor cell lines. Moreover, it bound to urinary cells of patients with bladder cancer, while showing little binding to urinary cells of patients with inflammation or healthy individuals. The CSNRDARRC peptide may be useful as a targeting moiety for selective delivery of therapeutics and as a diagnostic probe for the detection of bladder cancer.  相似文献   
86.
87.
Molecular and Cellular Biochemistry - Electron transfer occurs through heme-Fe across the cytochrome c protein. The current models of long range electron transfer pathways in proteins include...  相似文献   
88.
89.
RNase H is involved in fundamental cellular processes and is responsible for removing the short stretch of RNA from Okazaki fragments and the long stretch of RNA from R-loops. Defects in RNase H lead to embryo lethality in mice and Aicardi-Goutieres syndrome in humans, suggesting the importance of RNase H. To date, RNase H is known to be a non-sequence-specific endonuclease, but it is not known whether it performs other functions on the structural variants of RNA:DNA hybrids. Here, we used Escherichia coli RNase H as a model, and examined its catalytic mechanism and its substrate recognition modes, using single-molecule FRET. We discovered that RNase H acts as a processive exoribonuclease on the 3′ DNA overhang side but as a distributive non-sequence-specific endonuclease on the 5′ DNA overhang side of RNA:DNA hybrids or on blunt-ended hybrids. The high affinity of previously unidentified double-stranded (ds) and single-stranded (ss) DNA junctions flanking RNA:DNA hybrids may help RNase H find the hybrid substrates in long genomic DNA. Our study provides new insights into the multifunctionality of RNase H, elucidating unprecedented roles of junctions and ssDNA overhang on RNA:DNA hybrids.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号