首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   5篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   11篇
  2014年   8篇
  2013年   13篇
  2012年   11篇
  2011年   8篇
  2010年   13篇
  2009年   11篇
  2008年   15篇
  2007年   10篇
  2006年   15篇
  2005年   12篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有183条查询结果,搜索用时 609 毫秒
131.
132.
The complete cDNA sequence of CPS I obtained from the liver of the hylid tree frog, Litoria caerulea, consisted of 4,485?bp which coded for 1,495 amino acids with an estimated molecular mass of 163.7?kDa. The deduced CPS I consisted of a mitochondrial targeting sequence of 33 amino acid residues, a glutaminase amidotransferase component spanning from tyrosine 95 to leucine 425, and a methylglyoxal synthetase-like component spanning from valine 441 to lysine 1566. It also comprised two cysteine residues (cysteine 1360 and cysteine 1370) that are characteristic of N-acetyl-l-glutamate dependency. Similar to the CPS I of Rana catesbeiana and Cps III of lungfishes and teleosts, it contained the Cys?CHis?CGlu catalytic triad (cysteine 304, histidine 388 and glutamate 390). All Cps III contain methionine 305 and glutamine 308, which are essential for the Cys?CHis?CGlu triad to react with glutamine, but the CPS I of R. catesbeiana contains lysine 305 and glutamate 308, and therefore cannot effectively utilize glutamine as a substrate. However, the CPS I of L. caerulea, unlike that of R. catesbeiana, contained besides glutamate 308, methionine 305 instead of lysine 305, and thus represented a transitional form between Cps III and CPS I. Indeed, CPS I of L. caerulea could utilize glutamine or NH4 + as a substrate in vitro, but the activity obtained with glutamine?+?NH4 + reflected that obtained with NH4 + alone. Furthermore, only?<5?% of the glutamine synthetase activity was present in the hepatic mitochondria, indicating that CPS I of L. caerulea did not have an effective supply of glutamine in vivo. Hence, our results confirmed that the evolution of CPS I from Cps III occurred in amphibians. Since L. caerulea contained high levels of urea in its muscle and liver, which increased significantly in response to desiccation, its CPS I had the dual functions of detoxifying ammonia to urea and producing urea to reduce evaporative water loss.  相似文献   
133.
The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks. Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation, which involves the cooperation between CHD4 and RNF8 to create a local chromatin environment that is permissive to the assembly of checkpoint and repair machineries at DNA lesions.  相似文献   
134.
135.
The H2-D and -Q regions of the mouse major histocompatibility complex ( Mhc or H2) have been sequenced from strain 129/SvJ (haplotype bc), revealing a D/Q region different from all other investigated haplotypes, including the closely related b haplotype. The 300-kb class I-rich region consists of the classical class I, H2-D, and 11 non-classical class I genes. The Q region was formed by two series of tandem duplications. Comparison of the segment between the D and Q1 genes with the H2-K region provides evidence that class I genes were translocated from the K region to the D region, and gives a new explanation for the weak locus specificity of the H-Kand H2-Dalleles.  相似文献   
136.
We have determined that hMOF, the human ortholog of the Drosophila MOF gene (males absent on the first), encoding a protein with histone acetyltransferase activity, interacts with the ATM (ataxia-telangiectasia-mutated) protein. Cellular exposure to ionizing radiation (IR) enhances hMOF-dependent acetylation of its target substrate, lysine 16 (K16) of histone H4 independently of ATM function. Blocking the IR-induced increase in acetylation of histone H4 at K16, either by the expression of a dominant negative mutant DeltahMOF or by RNA interference-mediated hMOF knockdown, resulted in decreased ATM autophosphorylation, ATM kinase activity, and the phosphorylation of downstream effectors of ATM and DNA repair while increasing cell killing. In addition, decreased hMOF activity was associated with loss of the cell cycle checkpoint response to DNA double-strand breaks. The overexpression of wild-type hMOF yielded the opposite results, i.e., a modest increase in cell survival and enhanced DNA repair after IR exposure. These results suggest that hMOF influences the function of ATM.  相似文献   
137.
The objectives of this study were (1) to determine the type of carbamoyl phosphate synthetase (CPS) present, and the compartmentalization of arginase, in the livers of the African lungfishes, Protopterus aethiopicus and Protopterus annectens, and (2) to elucidate if these two lungfishes were capable of increasing the rates of urea synthesis and capacities of the ornithine-urea cycle (OUC) during 6 days of aerial exposure without undergoing aestivation. Like another African lungfish, Protopterus dolloi, reported elsewhere, the CPS activities from the livers of P. aethiopicus and P. annectens had properties similar to that of the marine ray (Taeniura lymma), but dissimilar to that of the mouse (Mus musculus). Hence, they possessed CPS III, and not CPS I as reported previously. CPS III was present exclusively in the liver mitochondria of both lungfishes, but the majority of the arginase activities were present in the cytosolic fractions of their livers. Glutamine synthetase (GS) activity was also detected in the hepatic mitochondria of both specimens. Therefore, our results suggest that the evolution of CPS III to CPS I might not have occurred before the evolution of extant lungfishes as suggested previously, prompting an examination of the current view on the evolution of CPS and OUC in vertebrates. Aerial exposure led to significant decreases in rates of ammonia excretion in P. aethiopicus and P. annectens, but there were no accumulations of ammonia in their tissues. However, urea contents in their tissues increased significantly after 6 days of aerial exposure. The estimated rates of urea synthesis in P. aethiopicus and P. annectens increased 1.2- and 1.47-fold, respectively, which were smaller than that in P. dolloi (8.6-fold) reported elsewhere. In addition, unlike P. dolloi, 6 days of aerial exposure had no significant effects on the hepatic CPS III activities of P. aethiopicus and P. annectens. In contrast, aerial exposure induced relatively greater degrees of reductions in ammonia production in P. aethiopicus (34%) and P. annectens (37%) than P. dolloi (28%) as previously reported. Thus, our results suggest that various species of African lungfishes respond to aerial exposure differently with respect to nitrogen metabolism and excretion, and it can be concluded that P. aethiopicus and P. annectens depended more on reductions in ammonia production than on increases in urea synthesis to ameliorate ammonia toxicity when exposed to terrestrial conditions.  相似文献   
138.
Neurotoxic metals have been implicated in the pathogenesis of multiple sclerosis, neurodegenerative disorders and brain tumours but studies of the location of heavy metals in human brains are rare. In a man who injected himself with metallic mercury the cellular location of mercury in his brain was studied after 5 months of continuous exposure to inorganic mercury arising from metallic mercury deposits in his organs. Paraffin sections from the primary motor and sensory cortices and the locus ceruleus in the pons were stained with autometallography to detect inorganic mercury and combined with glial fibrillary acidic protein immunohistochemistry to identify astrocytes. Inorganic mercury was found in grey matter subpial, interlaminar, protoplasmic and varicose astrocytes, white matter fibrous astrocytes, grey but not white matter oligodendrocytes, corticomotoneurons and some locus ceruleus neurons. In summary, inorganic mercury is taken up by five types of human brain astrocytes, as well as by cortical oligodendrocytes, corticomotoneurons and locus ceruleus neurons. Mercury can induce oxidative stress, stimulate autoimmunity and damage DNA, mitochondria and lipid membranes, so its location in these CNS cells suggests it could play a role in the pathogenesis of multiple sclerosis, neurodegenerative conditions such as Alzheimer’s disease and amyotrophic lateral sclerosis, and glial tumours.  相似文献   
139.
Enterovirus A71 (EV-A71) causes self-limiting, hand-foot-and-mouth disease (HFMD) that may rarely be complicated by encephalomyelitis. Person-to-person transmission is usually by fecal-oral or oral-oral routes. To study viral replication sites in the oral cavity and other tissues, and to gain further insights into virus shedding and neuropathogenesis, we developed a consistent, orally-infected, 2-week-old hamster model of HFMD and EV-A71 encephalomyelitis. Tissues from orally-infected, 2-week-old hamsters were studied by light microscopy, immunohistochemistry and in situ hybridization to detect viral antigens and RNA, respectively, and by virus titration. Hamsters developed the disease and died after 4–8 days post infection; LD50 was 25 CCID50. Macroscopic cutaneous lesions around the oral cavity and paws were observed. Squamous epithelium in the lip, oral cavity, paw, skin, and esophagus, showed multiple small inflammatory foci around squamous cells that demonstrated viral antigens/RNA. Neurons (brainstem, spinal cord, sensory ganglia), acinar cells (salivary gland, lacrimal gland), lymphoid cells (lymph node, spleen), and muscle fibres (skeletal, cardiac and smooth muscles), liver and gastric epithelium also showed varying amounts of viral antigens/RNA. Intestinal epithelium, Peyer’s patches, thymus, pancreas, lung and kidney were negative. Virus was isolated from oral washes, feces, brain, spinal cord, skeletal muscle, serum, and other tissues. Our animal model should be useful to study squamous epitheliotropism, neuropathogenesis, oral/fecal shedding in EV-A71 infection, person-to-person transmission, and to test anti-viral drugs and vaccines.  相似文献   
140.
We investigated at different developmental stages the antigen recognition and presentation capacity of pecteneal hyalocytes that adhere to the pecten oculi in the eye of domestic chickens. Forty-eight fertilized eggs were used to investigate embryonic stages and 12 6-week-old chickens were used to investigate adults. Tissue samples from both embryos and adults were stained with monoclonal antibodies against MHC-II, TLR2/CD282 and TLR4, and also with RCA-1, WGA and SNA lectins. The developmental stage of the pecteneal hyalocytes was determined using Masson's triple staining. Pecteneal hyalocytes first appeared at Hamburger-Hamilton stages 30 34 and remained unchanged from their first appearance to adulthood. Chicken pecteneal hyalocytes were stained by monoclonal antibodies against TLR2 and TLR4, and were unstained by monoclonal antibodies for MHC-II. Hyalocytes were positive for RCA-I, WGA and SNA lectins. We found that pecteneal hyalocytes that adhere to the pecten oculi in domestic chickens recognized antigens, but could not present them. These cells have been assumed to be of monocyte/macrophage lineage; their functions in the immune response are not fully understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号