首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5234篇
  免费   391篇
  国内免费   254篇
  2024年   7篇
  2023年   61篇
  2022年   115篇
  2021年   231篇
  2020年   178篇
  2019年   215篇
  2018年   196篇
  2017年   175篇
  2016年   279篇
  2015年   319篇
  2014年   356篇
  2013年   416篇
  2012年   481篇
  2011年   422篇
  2010年   254篇
  2009年   204篇
  2008年   282篇
  2007年   228篇
  2006年   194篇
  2005年   174篇
  2004年   183篇
  2003年   133篇
  2002年   141篇
  2001年   83篇
  2000年   50篇
  1999年   73篇
  1998年   48篇
  1997年   54篇
  1996年   38篇
  1995年   30篇
  1994年   32篇
  1993年   21篇
  1992年   33篇
  1991年   12篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   19篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1970年   3篇
排序方式: 共有5879条查询结果,搜索用时 15 毫秒
231.
Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.  相似文献   
232.
The function of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in cancer is background dependent and may be involved in the initial step of active DNA demethylation, while there is little research to decipher the role of TET1 in DNA methylation-sensitive colon cancer. Downregulated TET1 expression assayed by quantitative real-time PCR (qRT-PCR) was observed in both colon cancer samples and cancer cell lines of HT29, HCT116, and SW48. Such downregulation could promote colon cancer cells proliferation as indicated by the fact that shTET1 could increase the viability of HT29 and HCT116 cells determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and cell count assay accompanied with upregulation of β-catenin (CTNNB1) and WNT luciferase activity, which was further confirmed as shTET1 could increase the tumor volume and tumor weight, and decrease the body weight in HT29 cells inoculated BALB/C nude mice. The CTNNB1 transfection could rescue the cell growth diminished by normal expression of TET1. shTET1 could promote axis inhibition protein1 (AXIN1) expression and the cell proliferation effect induced by TET1 short hairpin RNA was attenuated by co-inhibition of AXIN1. All of these indicate that TET1 can suppress colon cancer proliferation and the inhibition of the β-catenin pathway is AXIN1 dependent.  相似文献   
233.
Lung cancer is the leading cause of cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a major event that drives cancer progression. Here we aim to investigate the role of microRNA, miR-145, in regulating EMT of the highly invasive non–small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction analysis indicated that miR-145 was downregulated in cancer tissue compared with that in adjacent normal tissue. NSCLC cell lines, namely H1299, PC7, and SPCA-1, also demonstrated miR-145 downregulation, which is correlated well with their invasive ability, assessed by the Matrigel invasion assay. miR-145 overexpression resulted in downregulation of N-cadherin, and downregulation of vimentin and E-cadherin, suggesting a decreased EMT activity. TargetScan analysis predicted that a binding site exists between miR-145 and an oncogene, ZEB2, which was verified using the dual-luciferase assay. Alteration of miR-145 expression also induced inverse effects on ZEB2 expression, and a negative correlation exists between ZEB2 and miR-145 in human tissues. ZEB2 and miR-145 also exerted antagonizing effects on the invasion of NSCLC cells. Therefore, miR-145 is an important molecule in NSCLC that regulates cancer EMT through targeting ZEB2.  相似文献   
234.
ObjectivesAdult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified.Materials and MethodsFlies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms.ResultsHere, we report a member of the chloride channel family, ClCc, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClCc in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway.ConclusionOur findings reveal an ISC‐specific function of ClCc in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.  相似文献   
235.
236.
Resveratrol is a key component of red wine and other grape products. Recent studies have characterized resveratrol as a polyphenol, and shown its beneficial effects on cancer, metabolism, and infection. This study aimed to obtain insights into the biological effects of resveratrol on myopia. To this end, we examined its anti-inflammatory influence on human retinal pigment epithelium cells and in a monocular form deprivation (MFD)-induced animal model of myopia. In MFD-induced myopia, resveratrol increased collagen I level and reduced the expression levels of matrix metalloproteinase (MMP)2, transforming growth factor (TGF)-β, and nuclear factor (NF)-κB expression levels. It also suppressed the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Resveratrol exhibited no significant cytotoxicity in ARPE-19 cells. Downregulation of inflammatory cytokine production, and inhibition of AKT, c-Raf, Stat3, and NFκB phosphorylation were observed in ARPE-19 cells that were treated with resveratrol. In conclusion, the findings suggest that resveratrol inhibits inflammatory effects by blocking the relevant signaling pathways, to ameliorate myopia development. This may make it a natural candidate for drug development for myopia.  相似文献   
237.
238.
Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling–mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.  相似文献   
239.
Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3’UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号