全文获取类型
收费全文 | 122篇 |
免费 | 4篇 |
专业分类
126篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 8篇 |
2011年 | 6篇 |
2010年 | 3篇 |
2009年 | 3篇 |
2008年 | 11篇 |
2007年 | 11篇 |
2006年 | 17篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 4篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1989年 | 1篇 |
1988年 | 4篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有126条查询结果,搜索用时 15 毫秒
111.
Michael J. Kadan Ann Marie Krohn Mark J. Evans Robin L. Waltz Paul R. Hartig 《Journal of neurochemistry》1984,43(3):601-606
Acetylcholinesterase (AChE) is found both in motor end-plate (MEP)-free and MEP-rich regions of rat or mouse muscle. We studied the developmental aspects of the localization of asymmetric 16S AChE in both regions of the sternocleidomastoid muscle, which has a well-defined zone of motor innervation. In the rat, the proportion of 16S AChE to total AChE increases in the MEP-rich region, and becomes significantly higher than in the MEP-free regions between the first and the second weeks after birth. In the mouse, at birth, the MEP-rich region already has a higher relative content in 16S AChE than the MEP-free regions. Total 16S AChE amounts increase during postnatal development, not only in the MEP-rich region but also in the MEP-free regions. Thus, 16S AChE is not eliminated from MEP-free regions during muscle maturation and growth. Two distinct pools of 16S AChE are distinguished in the muscles, both of which increase during postnatal development: junctional and background 16S AChE. 相似文献
112.
Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes 下载免费PDF全文
Kory M. Evans Brandon Waltz Victor Tagliacollo Prosanta Chakrabarty James S. Albert 《Ecology and evolution》2017,7(6):1783-1801
Convergent evolution is widely viewed as strong evidence for the influence of natural selection on the origin of phenotypic design. However, the emerging evo‐devo synthesis has highlighted other processes that may bias and direct phenotypic evolution in the presence of environmental and genetic variation. Developmental biases on the production of phenotypic variation may channel the evolution of convergent forms by limiting the range of phenotypes produced during ontogeny. Here, we study the evolution and convergence of brachycephalic and dolichocephalic skull shapes among 133 species of Neotropical electric fishes (Gymnotiformes: Teleostei) and identify potential developmental biases on phenotypic evolution. We plot the ontogenetic trajectories of neurocranial phenotypes in 17 species and document developmental modularity between the face and braincase regions of the skull. We recover a significant relationship between developmental covariation and relative skull length and a significant relationship between developmental covariation and ontogenetic disparity. We demonstrate that modularity and integration bias the production of phenotypes along the brachycephalic and dolichocephalic skull axis and contribute to multiple, independent evolutionary transformations to highly brachycephalic and dolichocephalic skull morphologies. 相似文献
113.
114.
115.
116.
117.
118.
119.
120.