首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   16篇
  204篇
  2021年   1篇
  2020年   2篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   14篇
  2012年   19篇
  2011年   13篇
  2010年   7篇
  2009年   9篇
  2008年   4篇
  2007年   10篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1986年   2篇
  1984年   3篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
  1957年   1篇
  1956年   2篇
  1952年   1篇
排序方式: 共有204条查询结果,搜索用时 0 毫秒
91.
The disruption of redox control, i.e., oxidative stress, is one of the most destructive causes of ischemia-reperfusion (IR) injury. Thioredoxin (Trx) family proteins play a major role in the cellular response to oxidative stress. Here, we systematically investigated the levels and tissue distribution of 15 members of this family (Trx and TrxR 1 and 2, Nrx, Prx 1-6, and Grx 1-3 and 5) in mouse kidneys after induction of IR by comparing control, clamped, and contralateral organs. After IR, levels of various redoxins were quantified. Immunohistochemical analysis revealed segment-specific alterations induced by the ischemic insult. Grx2, Prx3, and Prx6 were highly expressed in proximal tubule cells. Overexpression of these proteins in HEK293 and HeLa cells subjected to hypoxia and reoxygenation revealed higher survival and proliferation rates and lower oxidative damage compared to controls. Furthermore, we report for the first time the accumulation of Grx1 at the apical side of distal convoluted cells and the specific secretion of Grx1 into the urine after IR. The differences in both the basal equipment and the segment-specific responses of the antioxidant proteins may contribute to the distinct susceptibilities and regeneration processes of the various segments of the nephron to the IR insult.  相似文献   
92.

Background

Oxidoreductases of the thioredoxin family of proteins have been thoroughly studied in numerous cellular and animal models mimicking human diseases. Despite of their well documented role in various disease conditions, no systematic information on the presence of these proteins is available.

Methods

Here, we have systematically analyzed the presence of some of the major constituents of the glutaredoxin (Grx)-, peroxiredoxin (Prx)-, and thioredoxin (Trx)-systems, i.e. Grx1, Grx2, Grx3 (TXNL-2/PICOT), Grx5, nucleoredoxin (Nrx), Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, thioredoxin reductase 1 (TrxR1), Trx2, TrxR2, and γ-glutamyl cysteine synthetase (γ-GCS) in various tissues of the mouse using immunohistochemistry.

Results

The identification of the Trx family proteins in the central nervous system, sensory organs, digestive system, lymphatic system, reproductive system, urinary system, respiratory system, endocrine system, skin, heart, and muscle revealed a number of significant differences between these proteins with respect to their distribution in these tissues.

Conclusion

Our results imply more specific functions and interactions between the proteins of this family than previously assumed.

General significance

Crucial functions of Trx family proteins have been demonstrated in various disease conditions. A detailed overview on their distribution in various tissues will be helpful to fully comprehend their potential role and the interactions of these proteins in the most thoroughly studied model for human diseases—the laboratory mouse.This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.  相似文献   
93.
Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% 1. Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient 2. Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures.We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K15NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest 3. By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or unlabeled cell culture undergoes a biological treatment, while the other serves as control 4.  相似文献   
94.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   
95.
 We demonstrate in a murine model that targeting an anti-viral T cell response to a growing tumor facilitates priming of a tumor-associated antigen (TAA)-specific, rejecting T cell response. Murine P815 mastocytoma cells grow aggressively in a syngeneic host. Transfected P815/S cells (expressing the hepatitis B surface antigen, HBsAg) also grow as subcutaneous tumors, but occasional ‘spontaneous’ rejections after transient growth are observed. Growth of P815/S tumors (but not of P815 tumors) is efficiently suppressed by a CD8+ cytotoxic T lymphocyte (CTL)-dependent immune mechanism in mice primed to HBsAg by DNA–immunization. In hosts immunized against HBsAg by DNA vaccination, HBsAg-specific CTL are generated. This specific CTL reactivity was targeted to s.c.-growing P815 tumors by intra tumor injections of either HBsAg-encoding plasmid DNA or viable P815/S cells; this treatment led to tumor rejection in 70–80% of the tumor-bearing animals. All rejecting animals showed a CD8+ CTL-dependent resistance to subsequent challenges by native, non-transfected P815 tumors. Targeting an established anti-viral (‘strong’) CTL response to a growing tumor hence is an efficient strategy to facilitate priming of a rejecting CTL response against (‘weak’) TAA in this system. Received: 18 December 1996 / Accepted: 6 February 1997  相似文献   
96.
The symbiotic polychaetes of the genus Osedax living on the bones of whale carcasses have become known as bone‐eating worms. It is believed that whale bones are the source of nutrition for those gutless worms and that fatty acids are produced by their symbionts and transferred to the host. However, the symbionts are of the heterotrophic group Oceanospirillales and as such are not able to synthesize organic carbon de novo. Also, they are not housed in close contact to the bone material. We studied the ultrastructure of the integument overlying the symbiont housing trophosome in the ovisac region and the roots region and of the symbiont‐free trunk region of Osedax to investigate the host's possible contribution in feeding for the whole symbiosis. The epidermis differs conspicuously between the three regions investigated and clearly points to being correlated with different functions carried out by those regions. The ultrastructure of the integument of the root region changed towards the ovisac region and corresponds with the change of the ultrastructure observed in the Osedax trophosome. We suggest that the epidermis in the root region is tightly linked to bone degradation and nutrient uptake. The trunk region possess two types of unicellular gland cells, at least one of which seems to be involved in secretion of the gelatinous tube of adult Osedax females. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
97.
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.  相似文献   
98.
Many plants, including Arabidopsis thaliana, retain a substantial portion of their photosynthate in leaves in the form of starch, which is remobilized to support metabolism and growth at night. ADP-glucose pyrophosphorylase (AGPase) catalyses the first committed step in the pathway of starch synthesis, the production of ADP-glucose. The enzyme is redox-activated in the light and in response to sucrose accumulation, via reversible breakage of an intermolecular cysteine bridge between the two small (APS1) subunits. The biological function of this regulatory mechanism was investigated by complementing an aps1 null mutant (adg1) with a series of constructs containing a full-length APS1 gene encoding either the wild-type APS1 protein or mutated forms in which one of the five cysteine residues was replaced by serine. Substitution of Cys81 by serine prevented APS1 dimerization, whereas mutation of the other cysteines had no effect. Thus, Cys81 is both necessary and sufficient for dimerization of APS1. Compared to control plants, the adg1/APS1(C81S) lines had higher levels of ADP-glucose and maltose, and either increased rates of starch synthesis or a starch-excess phenotype, depending on the daylength. APS1 protein levels were five- to tenfold lower in adg1/APS1(C81S) lines than in control plants. These results show that redox modulation of AGPase contributes to the diurnal regulation of starch turnover, with inappropriate regulation of the enzyme having an unexpected impact on starch breakdown, and that Cys81 may play an important role in the regulation of AGPase turnover.  相似文献   
99.
Because they are immotile organisms, higher plants have developed efficient strategies for adaptation to temperature changes. During cold acclimation, plants accumulate specific types of solutes to enhance freezing tolerance. The vacuole is a major solute storage organelle, but until now the role of tonoplast proteins in cold acclimation has not been investigated. In a comparative tonoplast proteome analysis, we identified several membrane proteins with altered abundance upon cold acclimation. We found an increased protein abundance of the tonoplast pyrophosphatase and subunits of the vacuolar V-ATPase and a significantly increased V-ATPase activity. This was accompanied by increased vacuolar concentrations of dicarbonic acids and soluble sugars. Consistently, the abundance of the tonoplast dicarbonic acid transporter was also higher in cold-acclimatized plants. However, no change in the protein abundance of tonoplast monosaccharide transporters was detectable. However, a generally higher cold-induced phosphorylation of members of this sugar transporter sub-group was observed. Our results indicate that cold-induced solute accumulation in the vacuole is mediated by increased acidification of this organelle. Thus solute transport activity is either modulated by increased protein amounts or by modification of proteins via phosphorylation.  相似文献   
100.

Background

Dabigatran etexilate (DE) is a new oral direct thrombin inhibitor. Clinical trials point towards a favourable risk-to-benefit profile of DE compared to warfarin. In this study, we evaluated whether hemorrhagic transformation (HT) occurs after experimental stroke under DE treatment as we have shown for warfarin.

Methods

44 male C57BL/6 mice were pretreated orally with 37.5 mg/kg DE, 75 mg/kg DE or saline and diluted thrombin time (dTT) and DE plasma concentrations were monitored. Ischemic stroke was induced by transient middle cerebral artery occlusion (tMCAO) for 1 h or 3 h. We assessed functional outcome and HT blood volume 24 h and 72 h after tMCAO.

Results

After 1 h tMCAO, HT blood volume did not differ significantly between mice pretreated with DE 37.5 mg/kg and controls (1.5±0.5 µl vs. 1.8±0.5 µl, p>0.05). After 3 h tMCAO, DE-anticoagulated mice did also not show an increase in HT, neither at the dose of 37.5 mg/kg equivalent to anticoagulant treatment in the therapeutic range (1.3±0.9 µl vs. control 2.3±0.5 µl, p>0.05) nor at 75 mg/kg, clearly representing supratherapeutic anticoagulation (1.8±0.8 µl, p>0.05). Furthermore, no significant increase in HT under continued anticoagulation with DE 75 mg/kg could be found at 72 h after tMCAO for 1 h (1.7±0.9 µl vs. control 1.6±0.4 µl, p>0.05).

Conclusion

Our experimental data suggest that DE does not significantly increase hemorrhagic transformation after transient focal cerebral ischemia in mice. From a translational viewpoint, this indicates that a continuation of DE anticoagulation in case of an ischemic stroke might be safe, but clearly, clinical data on this question are warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号