首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10875篇
  免费   1004篇
  国内免费   8篇
  11887篇
  2021年   90篇
  2018年   112篇
  2017年   124篇
  2016年   178篇
  2015年   336篇
  2014年   319篇
  2013年   432篇
  2012年   569篇
  2011年   520篇
  2010年   386篇
  2009年   307篇
  2008年   489篇
  2007年   508篇
  2006年   454篇
  2005年   540篇
  2004年   467篇
  2003年   449篇
  2002年   436篇
  2001年   171篇
  2000年   149篇
  1999年   160篇
  1998年   150篇
  1997年   114篇
  1996年   117篇
  1995年   112篇
  1994年   93篇
  1993年   129篇
  1992年   126篇
  1991年   137篇
  1990年   132篇
  1989年   139篇
  1988年   138篇
  1987年   110篇
  1986年   117篇
  1985年   90篇
  1984年   96篇
  1983年   88篇
  1982年   91篇
  1981年   123篇
  1980年   95篇
  1979年   117篇
  1978年   107篇
  1977年   100篇
  1976年   80篇
  1975年   83篇
  1974年   108篇
  1973年   112篇
  1972年   87篇
  1970年   96篇
  1969年   86篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
991.
992.
p53-binding protein-1 (53BP1) is phosphorylated in response to DNA damage and rapidly relocalizes to presumptive sites of DNA damage along with Mre11 and the phosphorylated histone 2A variant, gamma-H2AX. 53BP1 associates with the BRCA1 tumor suppressor, and knock-down experiments with small interfering RNA have revealed a role for the protein in the checkpoint response to DNA damage. By generating mice defective in m53BP1 (m53BP1(tr/tr)), we have created an animal model to further explore its biochemical and genetic roles in vivo. We find that m53BP1(tr/tr) animals are growth-retarded and show various immune deficiencies including a specific reduction in thymus size and T cell count. Consistent with a role in responding to DNA damage, we find that m53BP1(tr/tr) mice are sensitive to ionizing radiation (gamma-IR), and cells from these animals exhibit chromosomal abnormalities consistent with defects in DNA repair. Thus, 53BP1 is a critical element in the DNA damage response and plays an integral role in maintaining genomic stability.  相似文献   
993.
994.
In this study, we present a phylogeographic analysis of a group of lizards distributed in north‐western Patagonia, the Liolaemus elongatus complex. We sequenced 581 individuals for one mitochondrial gene (cytochrome‐b), and for a subset, we sequenced another mitochondrial gene (12S rRNA) and two nuclear genes: kinesin family member 24 (KIF24) and the anonymous nuclear locus LDAB1D. We estimated gene trees, mitochondrial and nuclear haploytpe networks, standard molecular diversity indices, genetic distances between lineages and Bayesian skyline plots. Our results provide evidence for recognition of seven species previously described within the L. elongatus complex: Liolaemus antumalguen, Liolaemus chillanensis, Liolaemus carlosgarini, Liolaemus burmeisteri, Liolaemus smaug, Liolaemus elongatus and Liolaemus crandalli, but we did not find sufficient evidence to support Liolaemus choique, Liolaemus shitan or Liolaemus sp. 6 as distinct species. We identified four candidate species (Liolaemus sp. 1, Liolaemus sp. 2, Liolaemus sp. 3 and Liolaemus sp. 7), and we discuss evolutionary processes that may have contributed to the origin of these lineages and their taxonomic and conservation implications.  相似文献   
995.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   
996.
997.

This interview with Yousry Nasrallah introduces an increasingly important Egyptian director to American audiences through his latest film, On Boys, Girls, and the Veil. The film is a documentary about a phenomenon sometimes misleadingly called “the veil” by Westerners. Nasrallah's film discusses relations between men and women through their own conversations about the wearing of clothes designed to restrict vision. The interview relates Nasrallah's work to the larger tradition of Egyptian filmmaking.  相似文献   
998.
999.
Exposure to estrogen-mimicking chemicals during critical periods of development, such as infancy, may have adverse effects. However, these effects can be difficult to characterize in most epidemiologic studies. For example, growth of reproductive organs may be susceptible to estrogenic chemicals, but measuring it requires skilled ultrasound examination; timing of pubertal onset may be altered, but observing it requires long-term follow up. To address the need for a simple marker of response to estrogenic exposures in infants, we propose a novel application of a classic marker of estrogen response in adult women: cytological evaluation of urogenital epithelial cells. In this cross-sectional study of 34 female and 41 male infants, we demonstrate that epithelial cells can be obtained from swabs of the vaginal introitus (females) and urethral meatus (males), as well as from spun urine, and that these cells respond to differential estrogenic conditions, as indicated by the relative abundance of the superficial epithelial cell type. To model varying estrogen exposure, we sampled from infants who were either newborn (highly exposed to maternal estrogens), or 12 weeks old (12W) (negligibly exposed to estrogen). Newborns had a higher percentage of superficial cells (%S), as compared to 12W (mean ± standard error: 8.3 ± 1.8 vs. 0.9 ± 0.2) (p < 0.01), consistent with an estrogen response. This difference in %S from newborn to 12W was observed similarly for swab (-7.6 ± 1.7) and urine (-7.3 ± 2.6) specimens and for males (-9.6 ± 2.9) and females (-5.2 ± 2.1). Examination of urogenital epithelial cells can successfully demonstrate estrogen response in both sexes, using cell specimens collected from either swab or urine sampling. In future studies, this simple, non-invasive method may be applied to assess whether estrogen-mimicking chemicals produce an estrogenic response in infants.  相似文献   
1000.
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号