首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3062篇
  免费   299篇
  2021年   37篇
  2020年   22篇
  2019年   30篇
  2018年   23篇
  2017年   36篇
  2016年   53篇
  2015年   76篇
  2014年   91篇
  2013年   103篇
  2012年   136篇
  2011年   176篇
  2010年   108篇
  2009年   90篇
  2008年   119篇
  2007年   123篇
  2006年   110篇
  2005年   129篇
  2004年   133篇
  2003年   125篇
  2002年   100篇
  2001年   139篇
  2000年   110篇
  1999年   89篇
  1998年   34篇
  1997年   27篇
  1996年   25篇
  1995年   21篇
  1994年   29篇
  1993年   32篇
  1992年   75篇
  1991年   67篇
  1990年   74篇
  1989年   85篇
  1988年   61篇
  1987年   65篇
  1986年   60篇
  1985年   45篇
  1984年   49篇
  1983年   37篇
  1982年   23篇
  1981年   29篇
  1980年   33篇
  1979年   43篇
  1978年   22篇
  1977年   26篇
  1976年   31篇
  1975年   17篇
  1974年   26篇
  1973年   17篇
  1971年   23篇
排序方式: 共有3361条查询结果,搜索用时 15 毫秒
131.
When purified D-amino acid dehydrogenase [Olsiewski, P. J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 255, 4487] is incubated with right-side-out membrane vesicles from Escherichia coli, the enzyme binds to the membrane in a time- and concentration-dependent manner. As a result, the vesicles acquire the ability to oxidize D-alanine and catalyze D-alanine-dependent active transport. Similarly, incubation of D-amino acid dehydrogenase with inside-out vesicles results in binding of enzyme and D-alanine oxidase activity. Antibody inhibition studies indicate that the enzyme is bound exclusively to the inner cytoplasmic surface of the membrane in native vesicles (i.e., membrane vesicles prepared from cells induced for D-amino acid dehydrogenase). In contrast, similar studies with reconstituted vesicles demonstrate that enzyme binds to the surface exposed to the medium regardless of the orientation of the membrane. Thus, enzyme bound to right-side-out vesicles is located on the opposite side of the membrane from where it is normally found. Remarkably, in the presence of D-alanine, reconstituted right-side-out and inside-out vesicles generate electrochemical proton gradients of similar magnitude but opposite polarity, indicating that enzyme bound to either surface of the membrane is physiologically functional. The results suggest that vectorial proton translocation via the respiratory chain occurs at a point distal to the site where electrons enter the respiratory chain from the primary dehydrogenase, a conclusion that is inconsistent with the notion that the dehydrogenase forms part of a proton-translocating loop.  相似文献   
132.
Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD   总被引:2,自引:0,他引:2  
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) was replaced by 1-deaza-FAD (carbon substituted for nitrogen at position 1). An improved method for production of apoenzyme by precipitation with acidic ammonium sulfate was developed. The modified enzyme, in the presence of p-hydroxybenzoate, catalyzed the oxidation of NADPH by oxygen, yielding NADP+ and H2O2, but the ability to hydroxylate p-hydroxybenzoate and other substrates was lost. An analysis of the mechanism of NADPH-oxidase catalysis showed a close analogy between the reaction pathways for native and modified enzymes. In the presence of p-hydroxybenzoate, the rate of NADPH consumption catalyzed by the 1-deaza-FAD form was about 11% that of the native enzyme. Both formed a stabilized flavin-C (4a)-OOH intermediate upon reaction of reduced enzyme with oxygen, but the 1-deaza-FAD enzyme could not utilize this peroxide to hydroxylate substrates, and the peroxide decomposed to oxidized enzyme and H2O2.  相似文献   
133.
134.
Regular aerial treatment of 14 000 km of watercourses has achieved and maintained, over an area of 700 000 km2 of West African savannah, a very high degree of control of the larvae of Simulium damnosum sensu stricto and S. sirbanum, the vectors of onchocerciasis in this area. However, particular and relatively restricted parts of this area, mainly in northern Ivory Coast and neighbouring parts of Upper Volta, experience regular and prolonged reinvasions by parous female vectors, which have already taken bloodmeals (and many of them carrying the parasites) and arrive from unknown sources probably hundreds of kilometres away, from directions probably between southwest and north. This reinvasion, now experienced in three successive years, represents the outstanding scientific, epidemiological and logistic problem still facing the WHO Onchocerciasis Control Programme. An outline is presented of the multidisciplinary investigations being undertaken to find a solution.  相似文献   
135.
136.
In the present investigation, an approach toward defining the role of ribosomes in stabilizing functional messenger RNA in cell-free extracts is described. The data presented show that initiation of protein synthesis is necessary for maximal functional stability of bacteriophage T4 deoxynucleotide kinase mRNA in vitro and suggest that much of the stability is attained by interaction of the deoxynucleotide kinase mRNA initiation site with a 30S ribosomal subunit. Data is also presented which suggest that any of several E. coli ribonucleases could serve as a messenger ribonuclease in vivo.  相似文献   
137.
The chemical and enzymatic properties of 26 analogues of riboflavin are presented. These analogues include both endo- and exocyclically substituted isoalloxazines with redox potentials from -370 to -128 mV. Physical and chemical data such as the electronic absorption spectra, pKas, and redox potentials of the analogues are presented and are discussed with respect to preferred tautomeric and resonance forms. Like riboflavin, most of the analogues are shown to be catalytic oxidants of dihydro-5-deazaflavins. Analogue binding to egg white binding apoprotein has been quantitated and serves to determine the origins of binding site specificity for this protein. Nearly all of the analogues that possess D-ribityl groups are found to be processed to the FAD level by the flavokinase/FAD synthetase system of Brevibacterium ammoniagenes. Most extensively studied are the reactivities of the analogues with the NAD(P)H:flavin oxidoreductase of Beneckea harveyi. Many of the analogues are substrates in this enzymatic redox reaction, and a linear free energy-rate relation (log Vmax vs. E0' of the analogue) is seen that parallels similar relationships in the nonenzymatic oxidation of dihydro-5-deazaflavins. This suggests a common mechanism for the reactions of such diverse flavins as riboflavin, 5-deazariboflavin, and 1-deazariboflavin.  相似文献   
138.
P Marcotte  C Walsh 《Biochemistry》1978,17(14):2864-2868
Upon oxidation of D-propargylglycine by D-amino acid oxidase, the enzyme is converted by covalent alkylation to catalytic species with different properties from those of native enzyme. At least five distinct modified enzyme species are present in the preparation, as determined by gel electro-focusing. Individual characterization of the components has not yet been attempted. The combined kinetic and spectral properties of the preparation have been studied. The modified enzymes have a marked preference for hydrophobic amino acids: the rates of oxidation decrease in the series D-phenylalanine, D-methionine, D-norleucine, D-norvaline, D-alpha-aminobutyrate, D-alanine. In addition, the observed Kms of the amino acids are increased, especially those of the smaller substrates (D-alanine and D-alpha-aminobutyrate). A primary kinetic isotope effect is observed upon oxidation of amino acids by the modified enzymes, evidence that this catalysis exhibits a different rate-determining step from catalysis by native enzyme. The modified apoenzyme exhibits intense absorbance at 318--320 nm, not present in native enzyme. This chromophore can be partially (75%) removed by treatment of the modified enzyme with hydrazine. However, the activity of native enzyme is not substantially restored by this process, suggesting the existence of superficial alkylations in addition to the modification responsible for the observed changes in kinetic parameters.  相似文献   
139.
140.
Summary The fluorinated pyrimidines 5-fluorouracil (5FU) and 5-fluorocytosine (5FC) induce the cytoplasmic petite mutation in the yeastSaccharomyces cerevisiae with high efficiency. It was found that in order to induce the mutation, 5FC must first be deaminated to 5FU. However, mutagenesis does not depend on the further conversion of 5FU to its deoxyriboside (5FUDR) and subsequent blockade of intracellular thymidine synthesis, since 5FUDR itself was found not to be mutagenic, and 5FU-induced mutagenesis was not antagonised by supplying thymidine monophosphate (dTMP) to a dTMP permeable strain. In any case, observations of the molecular changes accompanying petite induction in log phase cells ruled out the possibility that mutagenesis resulted simply from the dilution out of replication-blocked mitDNA molecules, since the appearance of mutants coincided with the synthesis of altered mitDNA molecules. In different strains, the resulting defective molecules were either maintained, giving rise to suppressive petites, or completely degraded, to give pure clones of neutral 0 mutants. It is suggested that this degradative process was a consequence of the incorporation of 5FU into RNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号