首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   105篇
  2021年   7篇
  2016年   9篇
  2015年   16篇
  2014年   15篇
  2013年   25篇
  2012年   19篇
  2011年   17篇
  2010年   12篇
  2009年   14篇
  2008年   10篇
  2007年   25篇
  2006年   18篇
  2005年   18篇
  2004年   15篇
  2003年   17篇
  2002年   14篇
  2001年   25篇
  2000年   30篇
  1999年   18篇
  1997年   10篇
  1996年   8篇
  1995年   9篇
  1994年   11篇
  1993年   9篇
  1992年   14篇
  1991年   9篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   7篇
  1986年   20篇
  1985年   23篇
  1984年   14篇
  1983年   17篇
  1982年   16篇
  1981年   10篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   13篇
  1976年   12篇
  1975年   11篇
  1974年   14篇
  1973年   12篇
  1971年   12篇
  1968年   7篇
  1967年   6篇
  1966年   8篇
  1965年   6篇
  1957年   7篇
排序方式: 共有752条查询结果,搜索用时 15 毫秒
741.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   
742.
Summary Pituitary growth hormone and prolactin, together with the homologous placental hormones, comprise a family of related protein hormones. Complete or partial amino acid sequences of seven mammalian growth hormones, six mammalian prolactins and one placental lactogen are available, and have been compared. A phylogenetic tree has been constructed which describes the relationships within the family. At least two gene duplications have occurred during the evolution of these proteins. Rates of evolution in the family have been quite variable, the overall rate of evolution having been apparently fairly slow, but having increased markedly on several occasions, most notably in the evolution of human (and, on the basis of immunological relationships, probably other primate) growth hormones and rat (and possibly other rodent) prolactins.  相似文献   
743.
The electrophysiological effects of the beta-agonist, isoprenaline, on hypertrophied left ventricular myocardium were measured to understand better the arrhythmic effects of beta-stimulation on the hypertrophied heart. Left ventricular hypertrophy was induced in guinea-pigs by constriction of the thoracic aorta. An age-matched sham-operated group served as controls. Isolated myocytes were held under voltage- and current clamp and the effect of isoprenaline on the L-type Ca2+ current, I(Ca), a Cl- current, I(Cl), and action potential morphology were measured. Cardiac growth was mirrored by cellular hypertrophy. I(Ca) and I(Cl) current density were reduced as myocyte hypertrophy progressed. The augmentation of I(Ca) and I(Cl) by isoprenaline was also reduced in hypertrophy, but no other characteristics of the two currents, or the dose-dependency of the action of isoprenaline were a function of cardiac growth. Isoprenaline prolonged the action potential, but to a smaller extent in hypertrophied myocytes. This difference in action potential prolongation was abolished by glibenclamide. The changes to I(Ca) and I(Cl) in hypertrophy would not tend to increase triggered activity in this situation. Under maximum inotropic stimulation hypertrophied myocytes show action potential changes which are consistent with intracellular ATP depletion, and which could enhance the likelihood of re-entrant circuits. A simple diffusion model for oxygen is constructed to demonstrate the possibility of cellular hypoxia in hypertrophied myocytes.  相似文献   
744.
We investigated the relationship between hummock height and depth of inundation in a permanently inundated wetland in south-eastern Australia. Our survey of 318 hummocks, in water ranging from 0 to 70 cm depth, revealed a significant positive linear relationship and strong correlation between hummock height and water depth (r2 = 0.53 and 0.79 for Melaleuca ericifolia and Phragmites australis hummocks respectively). We also investigated whether water regime affects the decomposition rate of litter on hummocks; specifically, whether constant inundation slows decomposition to an extent that would promote accumulation of litter and hummock-building. On the contrary, we found that constantly submerged M. ericifolia litter decomposed faster than dry litter, but at a similar rate to litter that experienced intermittent inundation (decay rates (k) 0.0015 d−1, 0.0010 d−1 and 0.0008 d−1 for submerged, intermittent and dry treatments respectively). Submerged P. australis litter also decomposed faster (k = 0.0024 d−1) than dry litter (k = 0.0011 d−1). We discuss the interaction of water regime and decomposition of organic material and implications for the maintenance of hummock and hollow topography.  相似文献   
745.
746.

1. 1. Western Grey Kangaroos generally inhabit more arid and hotter regions than Eastern Greys.

2. 2. Ears from Western Greys are significantly thinner, less furred and have smaller, thinner hairs than those from Eastern Grays.

3. 3. Ears may act as better heat dissipators in the Western Greys than in the Eastern Greys.

Author Keywords: Grey kangaroos; Macropus giganteus; Macropus fuliginosus; ears; thermoregulation; heat loss  相似文献   

747.
748.
The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0, resulting from decreased activity of 3-ketoacyl-ACP synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains >40% high-melting-point molecular species (HMP-PG; molecules that contain only 16:0, 16:1-trans, and 18:0 fatty acids)—a trait associated with chilling-sensitive plants—compared with <10% in wild-type Arabidopsis. Although they do not exhibit short-term chilling sensitivity when exposed to low temperatures (2°C to 6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. To test the relevance of HMP-PG to the fab1 phenotype, we used transgenic 16:0 desaturases targeted to the endoplasmic reticulum and the chloroplast to lower 16:0 in leaf lipids of fab1 plants. We produced two lines that had very similar lipid compositions except that one, ER-FAT5, contained high HMP-PG, similar to the fab1 parent, while the second, TP-DES9*, contained <10% HMP-PG, similar to the wild type. TP-DES9* plants, but not ER-FAT5 plants, showed strong recovery and growth following 75 d at 2°C, demonstrating the role of HMP-PG in low-temperature damage and death in fab1, and in chilling-sensitive plants more broadly.

In higher plants, the chloroplast membranes that host the light harvesting and electron transport processes of photosynthesis have a characteristically high number of double bonds in the glycerolipid acyl chains. Only ∼10% of the fatty acids that compose the hydrophobic core of the thylakoid bilayer lack double bonds altogether, whereas >80% are polyunsaturated, having two or three double bonds (Ohlrogge et al., 2015). The photosynthetic light reactions produce reactive oxygen species as by-products, and these can degrade polyunsaturated fatty acids, so it is assumed that highly unsaturated membranes are required to support photosynthesis (McConn and Browse, 1998).The glycerolipids in chloroplast membranes are synthesized by two separate pathways. (Browse et al., 1986; Ohlrogge and Browse, 1995). Synthesis de novo of fatty acids takes place in the stroma of chloroplasts, producing 16:0 esterified to acyl carrier protein (ACP). A large proportion of this 16:0-ACP is elongated by 3-keto-acyl-ACP synthase II (KASII) to 18:0-ACP, which is in turn desaturated by stearoyl ACP desaturase to produce 18:1-ACP (Lindqvist et al., 1996; Carlsson et al., 2002). The fatty acids from 16:0-ACP and 18:1-ACP may be used within the chloroplast in the prokaryotic pathway (Kunst et al., 1988; Kim and Huang, 2004) to produce phosphatidic acid (PA). Some of this PA intermediate is used for synthesis of phosphatidylglycerol (PG; Ohlrogge and Browse, 1995; Wada and Murata, 2007), which is the only chloroplast glycerolipid that is produced solely by the prokaryotic pathway. In some plants, including Arabidopsis (Arabidopsis thaliana), PA is also converted to diacylglycerol (DAG), which is the precursor for the synthesis of the other chloroplast glycerolipids, monogalactosyldiacylglycerol (MGD), digalactosyldiacylglycerol (DGD), and sulfoquinovosyldiacylglycerol (SQD; Browse et al., 1986; Ohlrogge and Browse, 1995; Ohlrogge et al., 2015).The second route for chloroplast glycerolipid synthesis, the eukaryotic pathway, begins with export of 16:0 and 18:1 from the chloroplast as CoA thioesters. (Li et al., 2015). In the endoplasmic reticulum (ER), these fatty acids are rapidly incorporated into phosphatidylcholine (PC) by acyl exchange (Bates et al., 2007), and are also used (via PA and DAG intermediates) for the synthesis of all the phospholipids of the extrachloroplast membranes of the cell (Ohlrogge et al., 2015). In addition however, the DAG moiety of PC can be returned to the chloroplast and contribute to the production of MGD, DGD, and SQD required for thylakoid synthesis (Benning, 2009; Roston et al., 2012). The ER-to-chloroplast flux of lipid is reversible to some extent (Browse et al., 1989, 1993).With the exception of the first Δ9 double bond in 18:1-ACP, all the double bonds in the acyl chains are introduced after the initial synthesis of glycerolipid molecules. In Arabidopsis, this involves the action of seven fatty acid desaturases that are integral membrane proteins in the chloroplast and ER (Ohlrogge and Browse, 1995; Wallis and Browse, 2010). Characterization of Arabidopsis fatty acid desaturation (fad) mutants deficient in one or more of these desaturases has shown that the high level of thylakoid unsaturation is essential to photosynthetic function (Murakami et al., 2000; Routaboul et al., 2000). For example, fad2 fad6 double-mutant plants are unable to synthesize polyunsaturated fatty acids and cannot grow autotrophically; however, when grown on Suc as a carbon source, the double mutants are robust plants showing strong leaf and root development (McConn and Browse, 1998). These results indicate that the vast majority of receptor-mediated and transport-related membrane functions required to sustain the organism and induce proper development are adequately supported in the absence of polyunsaturated lipids; photosynthesis is the one process that requires high levels of polyunsaturation. Mutants with smaller changes in unsaturation are often similar to the wild type under typical growth-chamber conditions and reveal their phenotypes only under more extreme conditions (Wallis and Browse, 2002, 2010). Several mutants grow more slowly and become chlorotic at temperatures in the range 2°C to 10°C (Hugly and Somerville, 1992; Routaboul et al., 2000), indicating a role for fatty acid composition in maintaining photosynthesis at these low temperatures.Like other species native to temperate regions, Arabidopsis is chilling resistant and able to grow at temperatures close to 0°C. By contrast, many tropical and subtropical plant species are chilling sensitive and suffer sharp reductions of photosynthesis and extensive tissue damage after even short exposure to low temperatures. Many of the world’s most important crops, including rice (Oryza sativa), maize (Zea mays), and soybean (Glycine max) are chilling sensitive, so a better understanding of the biochemical and genetic factors contributing to this sensitivity has the potential to enhance sustainable food production (Nishida and Murata, 1996; Iba, 2002; Thakur et al., 2010). One hypothesis proposes that chilling sensitivity is a result of the fatty acid composition of chloroplast PG. It is based on the observation that many chilling-sensitive plants contain >30% of PG molecules with only saturated or trans unsaturated fatty acids—16:0, 18:0, and 16:1-Δ3trans (16:1t)—at both the sn-1 and sn-2 positions of the glycerol backbone, referred to as high-melting-point molecular species (HMP-PG; Murata, 1983; Barkan et al., 2006). This name alludes to the fact that HMP-PG species can induce a phase change from liquid crystalline (typical of biological membranes) to gel phase at temperatures well above 0°C and thereby disrupt membrane and cellular function (Murata and Yamaya, 1984). Chilling-resistant plants have <10% HMP species in chloroplast PG (Murata et al., 1982; Murata, 1983; Roughan, 1985).One perspective on the role of HMP-PG in plant temperature responses has come from our investigations of the fatty acid biosynthesis1 (fab1) mutant of Arabidopsis. In this mutant, a hypomorphic mutation in the gene encoding KASII reduces elongation of 16:0-ACP to 18:0-ACP (Carlsson et al., 2002), producing plants that have increased levels of 16:0 in all membrane glycerolipids (Wu et al., 1994). In particular, fab1 plants contain HMP-PG at levels (∼40% to 50% of total PG) similar to those of many chilling-sensitive plant species (Wu and Browse, 1995). Nevertheless, the fab1 mutant does not show typical symptoms of chilling sensitivity and is unaffected, in comparison to wild-type controls, by a range of chilling treatments that kill chilling-sensitive plants; instead, fab1 plants only show a collapse of photosynthesis after >10 d of exposure to 2°C, with the plants dying after several weeks at low temperature (Wu and Browse, 1995; Wu et al., 1997).We have previously screened for genetic suppressors of the fab1 low-temperature phenotype. Most, though not all, of the suppressor mutations substantially reduce the proportion of saturated fatty acids in PG, consistent with the notion that HMP-PG causes eventual death of fab1 plants in the cold (Barkan et al., 2006; Kim et al.,2010; Gao et al., 2015). However, all the suppressors have additional changes, relative to fab1, in the fatty acid compositions of membrane lipids that prevent a clear linkage between reductions in HMP-PG and improved low-temperature survival.Here, we have taken a new approach to investigating the role of HMP-PG in damage and death of fab1 plants at chilling temperatures by using a 16:0-CoA desaturase from Caenorhabditis elegans, FAT-5 (Watts and Browse, 2000), and a glycerolipid desaturase, DES9*15, derived from a cyanobacterial enzyme by directed evolution (Bai et al., 2016). When expressed in the fab1 mutant background, both the FAT-5 enzyme targeted to the ER and the DES9*15 enzyme targeted to the chloroplast reduced leaf 16:0 to near-wild type levels. The fatty acid compositions of individual leaf lipids in plants of both transgenic lines were very similar, with the sole exception of PG. Plants expressing the FAT-5 desaturase retained high levels of HMP-PG, similar to fab1, while plants expressing the DES9*15 enzyme had HMP-PG lowered to levels close to those of the wild type. Like the fab1 mutant, fab1 plants expressing a 16:0 desaturase in the ER lost photosynthetic function over 28 d of exposure to 2°C and showed little capacity for recovery and growth after longer periods at low temperature. By contrast, plants expressing a 16:0 desaturase targeted to the chloroplast retained substantial photosynthetic function, even after 75 d at 2°C, and were subsequently able to resume growth, flower, and set seed upon return to 22°C. These results provide the most direct evidence yet that high levels of HMP-PG cause gradual loss of photosynthesis and eventual death of plants at chilling temperatures.  相似文献   
749.
750.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号