首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  2022年   3篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2006年   3篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有72条查询结果,搜索用时 47 毫秒
21.
The yellow pigment content (YPC) of endosperm affects the quality and nutritional value of wheat grain products. Major quantitative trait loci (QTL) for endosperm YPC have been repeatedly mapped on chromosomes 7A and 7B in durum and bread wheats. The genes coding for phytoene synthase (PSY1), which is involved in the biosynthesis of carotenoids, generally co-segregate with these QTL, indicating their role in determining YPC. Here, to study the genetic factors underlying endosperm YPC in bread wheat, the sequence polymorphism of the homoeologous A, B and D copies of genes coding for PSY1, Psy-A1, Psy-B1, and Psy-D1, was studied in a worldwide core collection, which was also phenotyped for flour YPC. Seven novel alleles of Psy-A1 and two novel alleles of Psy-B1 were detected, which confirms the high level of polymorphism of these genes. Two major QTL with respective candidate genes Psy-A1 and Psy-B1 were identified in the distal region of chromosomes 7A and 7B using progeny of a cross between Apache and Ornicar, high and low YPC cultivars, respectively. Association mapping confirms the role of these genes in YPC and shows that the D copy also significantly influences this trait. These results indicate that breeders need to consider all three Psy1 copies when seeking to improve the YPC of wheat endosperm.  相似文献   
22.
23.
24.
Progenitor-derived endothelial cells (PDECs) isolated from human umbilical cord blood generate a great hope in the fields of vascular tissue engineering. Endothelial cells subjected to shear stress convert mechanical stimuli into intracellular signals that affect cellular functions. It is essential to ensure that PDECs are able to sense shear stress as mature endothelial cells from human saphenous veins (HSVECs) do with mitogen-activated protein (MAP) kinase and nuclear factor (NF)-kappaB signal transduction pathways. HSVECs and PDECs were seeded on glass slides coated with gelatin and exposed to 12dyn/cm(2) in a parallel-plate flow chamber. In both cell types, shear stress activated extracellular signal-related kinase (ERK)1/2 with a rapid time course (maximum 5min) followed by a reduced phosphorylation, and p38 pathway. c-Jun N-terminal protein kinase (JNK) phosphorylation is observed only in PDECs. With respect to NF-kappaB translocation to the nucleus, the NF-kappaB pathway is not activated by flow in HSVECs and PDECs although interleukin-1alpha (IL-1alpha) activates this pathway in both cell types. In our experimental conditions, shear stress does not modify the nuclear translocation of NF-kappaB in HSVECs after IL-1alpha stimulation. It can be stated that PDECs are shear stress sensitive and capable of signal transduction as mature HSVECs are, despite the unusual transduction response of both cell types.  相似文献   
25.
The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50 % of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27 % higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17 % lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production.  相似文献   
26.
Research in biomaterials for bone reconstruction has led to elaborate osteogenic composites that combine porous ceramics with bone marrow stromal cells. The aim of this study was to evaluate the influence of direct vascularization of such composites on osteogenesis and the ability to produce a vascularized bone substitute transplant in an ectopic muscular site. Sixty-four coralline biomaterials were implanted in 32 Fisher rats under four conditions: (1) alone (reference group M, n = 16), (2) coated with bone marrow stromal cells (group MC, n = 16), (3) combined with a vascular pedicle (group MV, n = 16), or (4) coated with bone marrow stromal cells and combined with a vascular pedicle (MCV group, n = 16). The number of vessels in the pores (vessel-pore ratio) of the implants and the proportion of pores showing bone ingrowth (bone-pore ratio) were measured at 2, 4, 6, and 8 weeks on four implants of each group. Compared with the reference group, angiogenesis was higher when the biomaterial was combined with a vascular pedicle or was coated with osteoprogenitor cells. The association of both vascular pedicle and osteoprogenitor cells increased vascularization by 60 percent (p = 0.003) and osteogenesis by 62 percent (p < 0.001). A combination of both vascular pedicle and bone marrow osteoprogenitor cells in coralline implants enhances neovascularization and osteogenesis after implantation in ectopic intramuscular sites to a greater extent than either does alone.  相似文献   
27.
Temperature tolerances and relative growth rates were determined for different isolates of the tropical to warm temperate seaweed species Cladophoropsis membranacea (C. Agardh) Boergesen (Siphonodadales, Chlorophyta) and some related taxa. Most isolates of C membranacea survived undamaged at 18° C for at least 8 weeks. Lower temperatures (5°–15°C) were tolerated for shorter periods of time but caused damage to cells. All isolates survived temperatures up to 34° C, whereas isolates from the eastern Mediterranean and Red Sea survived higher temperatures up to 36°C. Growth occurred between 18° and 32° C, but an isolate from the Red Sea had an extended growth range, reaching its maximum at 35°C. Struvea anastomosans (Harvey) Piccone & Grunow, Cladophoropsis sundanensis Reinbold, and an isolate of C. membranacea from Hawaii were slightly less cold- tolerant, with damage occurring at 18°C. Upper survival temperatures were between 32° and 36° C in these taxa. Temperature response data were mapped onto a phylogenetic tree. Tolerance for low temperatures appears to be a derived character state that supports the hypothesis that C. membranacea originated from a strictly tropical ancestor. Isolates from the Canary Islands, which is near the northern limit of distribution, are ill adapted to local temperature regimes. Isolates from the eastern Mediterranean and Red Sea show some adaptation to local temperature stress. They are isolated from those in the eastern Atlantic by a thermal barrier at the entrance of the Mediterranean.  相似文献   
28.
29.

Background

Endothelial cells have important functions in e.g. regulating blood pressure, coagulation and host defense reactions. Serglycin is highly expressed by endothelial cells, but there is limited data on the roles of this proteoglycan in immune reactions.

Methods

Cultured primary human endothelial cells were exposed to proinflammatory agents lipopolysaccharide (LPS) and interleukin 1β (IL-1β). The response in serglycin synthesis, secretion and intracellular localization and effect on the proteoglycan binding chemokines CXCL-1 and CXCL-8 were determined by qRT-PCR, Western blotting, immunocytochemistry, ELISA and serglycin knockdown experiments.

Results

Both LPS and IL-1β increased the synthesis and secretion of serglycin, while only IL-1β increased serglycin mRNA expression. Stimulation increased the number of serglycin containing vesicles, with a greater portion of large vesicles after LPS treatment. Also, increased intracellular and secreted levels of CXCL-1 and CXCL-8 were observed. The increase in CXCL-8 secretion was unchanged in serglycin knockdown cells. However, the increase in CXCL-1 secretion from IL-1β stimulation was reduced 27% in serglycin knockdown cells; while the LPS-induced secretion was not affected. In serglycin expressing cells CXCL-1 positive vesicles were evenly distributed throughout the cytoplasm, while confided to the Golgi region in serglycin knockdown cells. This was the case only for IL-1β stimulated cells. LPS-induced CXCL-1 distribution was unaffected by serglycin expression.

Conclusions

These results suggest that different signaling pathways are involved in regulating secretion of serglycin and partner molecules in activated endothelial cells.

General significance

This knowledge increases our understanding of the roles of serglycin in immune reactions. This article is part of a Special Issue entitled: Matrix-mediated cell behaviour and properties.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号