首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1424篇
  免费   143篇
  2021年   15篇
  2020年   9篇
  2019年   15篇
  2018年   18篇
  2017年   13篇
  2016年   39篇
  2015年   60篇
  2014年   62篇
  2013年   63篇
  2012年   78篇
  2011年   76篇
  2010年   52篇
  2009年   59篇
  2008年   67篇
  2007年   68篇
  2006年   58篇
  2005年   51篇
  2004年   35篇
  2003年   54篇
  2002年   45篇
  2001年   44篇
  2000年   37篇
  1999年   36篇
  1998年   15篇
  1997年   14篇
  1996年   12篇
  1995年   13篇
  1994年   11篇
  1993年   13篇
  1992年   34篇
  1991年   28篇
  1990年   17篇
  1989年   17篇
  1988年   31篇
  1987年   19篇
  1986年   14篇
  1985年   23篇
  1984年   27篇
  1983年   19篇
  1982年   14篇
  1981年   20篇
  1980年   11篇
  1979年   16篇
  1978年   9篇
  1976年   10篇
  1975年   9篇
  1974年   11篇
  1973年   10篇
  1969年   11篇
  1968年   8篇
排序方式: 共有1567条查询结果,搜索用时 31 毫秒
131.
The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design.  相似文献   
132.
The natural response to itch sensation is to scratch, which relieves the itch through an unknown mechanism. Interaction between pain and itch has been frequently demonstrated, and the selectivity hypothesis of itch, based on data from electrophysiological and behavioral experiments, postulates the existence of primary pain afferents capable of repressing itch. Here, we demonstrate that deletion of vesicular glutamate transporter (VGLUT) 2 in a subpopulation of neurons partly overlapping with the vanilloid receptor (TRPV1) primary afferents resulted in a dramatic increase in itch behavior accompanied by a reduced responsiveness to thermal pain. The increased itch behavior was reduced by administration of antihistaminergic drugs and by genetic deletion of the gastrin-releasing peptide receptor, demonstrating a dependence on VGLUT2 to maintain normal levels of both histaminergic and nonhistaminergic itch. This study establishes that VGLUT2 is a major player in TRPV1 thermal nociception and also serves to regulate a normal itch response.  相似文献   
133.
A crucial step for a journal is the attainment of an acceptable impact factor. Impact factors of journals are calculated each year by Thomson Scientific (ISI) and reported in the Journal Citation Reports (JCR).  相似文献   
134.
As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most commonly found near the luminal surface in between the intima and the media layer of the vessel wall. In this study, we therefore investigate the influence of calcifications as separate AAA constituents on finite element simulation results. Thus, three AAAs are reconstructed with regard to intraluminal thrombus (ILT), calcifications and vessel wall. Each patient-specific AAA is simulated twice, once including all three AAA constituents and once neglecting calcifications as it is still common in literature. Parameters for constitutive modeling of calcifications are thereby taken from experiments performed by the authors, showing that calcifications exhibit an almost linear stress–strain behavior with a Young’s modulus E ≥ 40 MPa. Simulation results show that calcifications exhibit significant load-bearing effects and reduce stress in adjacent vessel wall. Average stress within the vessel wall is reduced by 9.7 to 59.2%. For two out of three AAAs, peak wall stress decreases when taking calcifications into consideration (8.9 and 28.9%). For one AAA, simulated peak wall stress increases by 5.5% due to stress peaks near calcification borders. However, such stress singularities due to sudden stiffness jumps are physiologically doubtful. It can further be observed that large calcifications are mostly situated in concavely shaped regions of the AAA wall. We deduce that AAA shape is influenced by existent calcifications, thus crucial errors occur if they are neglected in computational wall stress analyses. A general increase in rupture risk for calcified AAAs is doubted.  相似文献   
135.
One of the diseases of veterinary and public health importance affecting the Kafue lechwe (Kobus leche kafuensis) on the Kafue flats is brucellosis, for which only scant information is available. During the 2003 (October), 2004 (December), and 2008 (July-December) hunting seasons in the Kafue flats, we conducted a study to determine the seroprevalence of Brucella spp. in the Kafue lechwe and to evaluate serologic tests for detection of Brucella spp. antibodies in lechwe. The Rose Bengal Test (RBT), competitive enzyme-linked immunosorbent assay (cELISA), and fluorescence polarization assay (FPA) were used. A total of 121 Kafue lechwe were hunted for disease investigations in 2003, 2004, and 2008 in the Kafue Flat Game Management Area. Of these, 21.6%, (95% confidence interval [CI]: 14.2-29.1%) had detectable antibodies to Brucella spp. The Kafue lechwe in Lochnivar National Park had higher antibody results than those in Blue Lagoon National Park (odds ratio=3.0; 95% CI: 0.94-9.4). Infection levels were similar in females (21.6%) and males (21.7%). Results were similar among RBT, FPA, cELISA tests, suggesting that these could effectively be used in diagnosing brucellosis in the Kafue lechwe. Our study demonstrates the presence of Brucella infections in the Kafue lechwe in two national parks located in the Kafue flats and further highlights the suitability of serologic assays for testing the Kafue lechwe. Because the Kafue lechwe is the most hunted wildlife species in Zambia, hunters need to be informed of the public health risk of Brucella spp. infection.  相似文献   
136.
Contamination of meat products with food-borne pathogens usually results from the carcass coming in contact with the feces of an infected animal during processing. In the case of Salmonella, pigs can become colonized with the organism during transport and lairage from contaminated trailers and holding pens, resulting in increased pathogen shedding just prior to processing. Increased shedding, in turn, amplifies the likelihood of carcass contamination by magnifying the amount of bacteria that enters the processing facility. We conducted a series of experiments to test whether phage therapy could limit Salmonella infections at this crucial period. In a preliminary experiment done with small pigs (3 to 4 weeks old; 30 to 40 lb), administration of an anti-Salmonella phage cocktail at the time of inoculation with Salmonella enterica serovar Typhimurium reduced Salmonella colonization by 99.0 to 99.9% (2- to 3-log reduction) in the tonsils, ileum, and cecum. To test the efficacy of phage therapy in a production-like setting, we inoculated four market-weight pigs (in three replicates) with Salmonella enterica serovar Typhimurium and allowed the challenged pigs to contaminate a holding pen for 48 h. Sixteen naïve pigs were randomly split into two groups which received either the anti-Salmonella phage cocktail or a mock treatment. Both groups of pigs were comingled with the challenged pigs in the contaminated pen. Treatment with the anti-Salmonella phage cocktail significantly reduced cecal Salmonella concentrations (95%; P < 0.05) while also reducing (numerically) ileal Salmonella concentrations (90%; P = 0.06). Additional in vitro studies showed that the phage cocktail was also lytic against several non-Typhimurium serovars.The U.S. Centers for Disease Control and Prevention report approximately 40,000 culture-confirmed cases of salmonellosis each year in the United States, which result in approximately 400 deaths (5). Many Salmonella outbreaks are associated with meat and poultry (20), with contamination usually resulting from the carcass coming into contact with the feces of a Salmonella-infected animal during processing (22).There is an association between pork products and Salmonella, as swine are generally considered to be the second largest reservoir of the organism among food animals after poultry. Although infections in adult swine are normally asymptomatic, once colonized, pigs can shed the organism in the feces for weeks and sometimes months (7).While a great deal of research has been done on developing on-farm anti-Salmonella intervention strategies, these methods are confounded by the fact that Salmonella prevalence in pigs often increases once the animals leave the farm as a result of (i) stress-induced reactivation of preexisting infections (14), (ii) new infections from contaminated transport trailers and processing facility holding pens (12, 15, 24, 31), or (iii) both. Consequently, animals with no history of previous Salmonella infection can begin shedding the organism just prior to processing, which is highly problematic in terms of food safety.We hypothesized that phage therapy could be developed as an effective means to counteract transport- and lairage-associated increases in Salmonella colonization in swine. Phage therapy has the advantage of being natural, nontoxic, and relatively inexpensive and could be used just prior to slaughter, unlike many antibiotics (18, 28). Here we describe a series of experiments demonstrating that treating market-weight pigs with an anti-Salmonella phage cocktail prior to their comingling with Salmonella-infected pigs in a highly contaminated environment resulted in reductions in Salmonella colonization. We further show that the phage cocktail could be effectively microencapsulated, making feed or water delivery possible.  相似文献   
137.
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.Glycosylation is one of the most common post-translational modifications of proteins. It is estimated that over half of mammalian proteins are glycosylated. Patients with several autoimmune disorders, chronic inflammatory diseases, and some infectious diseases exhibit abnormal glycosylation of serum immunoglobulins and other glycoproteins (15). The biological functions of these modifications in health and disease have become a significant area of interest in biomedical research (6). A subset of these glycoproteins has clustered sites of O-glycosylation with serine- and threonine-rich stretches within the amino acid sequence. Mucins, such as membrane-associated MUC1, are perhaps the best known family of proteins that are heavily O-glycosylated. Their altered expression and aberrant glycosylation have made them potential targets as biomarkers for early detection of cancer (7). Immunoglobulin A1 (IgA1)1 contains both O- and N-glycans (Fig. 1). Aberrant O-glycosylation of IgA1 is involved in the pathogenesis of IgA nephropathy (IgAN) and the closely related Henoch-Schönlein purpura nephritis (1, 8). Interestingly, the aberrantly glycosylated molecules, IgA1 in IgAN and MUC1 in cancer, are recognized by the immune system as neoepitopes as evidenced by formation of specific antibodies (911). Mucin-like bacterial surface proteins exhibit similar properties: the molecules have clustered bacterial O-glycans that mediate cellular adhesion, and blocking antibodies target these glycan-containing epitopes (12).Open in a separate windowFig. 1.IgA1 structural elements. IgA1 has N-linked glycans (filled circles) and O-linked glycans (open circles). The O-glycosylated sites are in the HR between the first and second constant region domains of the heavy chains. The HR is a Pro-rich segment with nine possible sites of O-glycan attachment. Underlined serine and threonine residues are usually glycosylated (31). Arrows show cleavage sites of trypsin and IgA-specific proteases.An O-glycosylated protein from a single source contains a population of variably O-glycosylated isoforms that show a distinct distribution of microheterogeneity of the O-glycan chains in terms of number, sites of attachment, and composition. Characterizing these clustered sites and understanding how the distributions change under different biological conditions or disease states are an analytical challenge. Enzymatic or chemical release of O-glycans is not selective. The heterogeneity, composition, and quantitative aspects of different O-glycan chains can be assessed and quantified by gas chromatographic and/or mass spectrometric techniques. However, the site-specific information and context of location and composition of adjacent chains are lost. Carbohydrate-specific lectin analysis of O-glycoproteins can provide information on glycan composition and comparative differences between samples, such as those from healthy controls and patients with various disease states. We have successfully demonstrated this in the analysis of IgA1 O-glycans from patients with IgAN versus healthy controls and disease controls (1315). This included proximal assessment of sites with galactose (Gal)-deficient O-glycans after digests with IgA-specific proteases (8). Several studies have demonstrated the value of mass spectrometry (MS) in identifying Gal-deficient IgA1 in patients with IgAN (1621), including our work that demonstrated the first direct localization of native sites of O-glycan chains in the hinge region (HR) of IgA1 by use of electron capture dissociation (ECD) (20, 22). ECD and the more recently developed electron transfer dissociation (ETD) have been used to identify sites of O-glycosylation on a variety of proteins (2326). This includes the analysis of sites of O-glycosylation by on-line LC-ECD/ETD MS/MS methods (23, 26, 27).IgAN is the most common primary glomerulonephritis worldwide (28) with about 20–40% of patients developing end stage renal failure. It is characterized by mesangial deposits of IgA1-containing immune complexes (28). The distinctive O-glycan chains of IgA1 molecules play a pivotal role in the pathogenesis of IgAN (1, 10, 1416, 29, 30). IgA1 contains an HR between the first and second heavy chain constant region domains with a high content of Ser, Thr, and Pro. This segment usually has three to five O-glycan chains per HR (31) (see Fig. 1). Aberrantly glycosylated IgA1, deficient in Gal in some of the O-glycans in the HR, in serum is rare in healthy individuals but is present at elevated levels in IgAN patients (13, 15). This distinctive IgA1 is in circulating immune complexes (8, 10, 15) and in the glomerular deposits of IgAN patients (16, 29). The absence of Gal apparently leads to the exposure of neoepitopes, including terminal and sialylated N-acetylgalactosamine (GalNAc) residues (9, 10). These epitopes are recognized by naturally occurring anti-glycan IgG or IgA1 antibodies and, consequently, circulating immune complexes are formed (9, 10, 15) that can deposit in the glomerular mesangia. To identify the pathogenic forms of IgA1, a thorough analysis of O-glycan microheterogeneity, including identification of the attachment sites, will be required.In this work, we demonstrate the complete analysis of O-glycoform microheterogeneity and site localization of the glycoforms in a naturally Gal-deficient IgA1 (Ale) myeloma protein that mimics the nephritogenic IgA1 in patients with IgAN (8, 9). Reversed phase (RP) LC FT-ICR MS successfully identified 10 distinct IgA1 HR fragments representing >99% of total IgA1. AI-ECD of the six most abundant IgA1 HR glycoforms (>95% of total IgA1) was accomplished with three distinct IgA-specific protease + trypsin digestions, identifying sites of Gal deficiency across four distinct IgA1 O-glycoforms. Based on the success of the ECD fragmentation of these IgA1 HR fragments, we adapted the analysis for on-line LC-MS/MS methods for both ECD and ETD. The variety of IgA1 HR proteolytic fragments provides a practical set of guidelines for the ECD/ETD analysis of clustered sites of O-glycosylation on this and other proteins. These results also provide insight into the order of attachment of the O-glycans in the IgA1 HR.  相似文献   
138.
139.
A mathematical model of endothelial cell calcium signalling and nitric oxide synthesis under flow conditions is presented. The model is coupled to two important environmental stimuli for endothelial cells: the frictional shear stress exerted on the cell membrane by the blood flow; and the binding of adenosine triphosphate in the bloodstream to cell surface receptors. These stimuli are closely linked to haemodynamic flow conditions and are, in general, spatially varying, allowing the cellular response in different regions of the endothelium to be evaluated. This is used to indicate which areas of the artery wall experience reduced bioavailability of nitric oxide, which is a major factor in the onset of atherosclerosis. The model thus directly addresses the key issue of the causative link, and its underlying biochemical mechanisms, between incidence of atherosclerosis and regions of low wall shear stress (WSS). Model results show that intracellular levels of free calcium and endothelial nitric oxide synthase are lower in endothelial cells adjacent to a region of recirculating flow than in cells adjacent to regions of fully developed arterial flow. This will lead to deficient levels of nitric oxide in the recirculation zone and hence a potentially elevated risk of developing atherosclerotic plaque. This is consistent with the observed spatial correlation between atherosclerosis and regions of disturbed blood flow and low WSS, and provides a mechanism for the localisation of the disease to sites such as arterial bifurcations and bends.  相似文献   
140.
Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. In 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. The discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis--an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components--and provides a new molecular target for studies of obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号