首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27569篇
  免费   2880篇
  国内免费   13篇
  30462篇
  2023年   141篇
  2022年   343篇
  2021年   645篇
  2020年   313篇
  2019年   436篇
  2018年   489篇
  2017年   391篇
  2016年   695篇
  2015年   1171篇
  2014年   1213篇
  2013年   1675篇
  2012年   1922篇
  2011年   1885篇
  2010年   1168篇
  2009年   1054篇
  2008年   1514篇
  2007年   1486篇
  2006年   1334篇
  2005年   1238篇
  2004年   1153篇
  2003年   1083篇
  2002年   1064篇
  2001年   428篇
  2000年   380篇
  1999年   368篇
  1998年   241篇
  1997年   225篇
  1996年   195篇
  1995年   173篇
  1994年   187篇
  1993年   177篇
  1992年   245篇
  1991年   241篇
  1990年   249篇
  1989年   216篇
  1988年   229篇
  1987年   192篇
  1986年   192篇
  1985年   229篇
  1984年   204篇
  1983年   186篇
  1982年   179篇
  1981年   153篇
  1980年   149篇
  1979年   190篇
  1978年   141篇
  1977年   135篇
  1976年   136篇
  1975年   156篇
  1973年   137篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
52.
Hierarchical down-modulation of hemopoietic growth factor receptors   总被引:31,自引:0,他引:31  
F Walker  N A Nicola  D Metcalf  A W Burgess 《Cell》1985,43(1):269-276
Granulocytes and macrophages can be produced in vitro when progenitor cells from mouse bone marrow are stimulated by any of four distinct colony stimulating factors, Multi-CSF (IL-3), GM-CSF, G-CSF, and M-CSF (CSF-1). At 0 degrees C the four CSFs do not cross-compete for binding to bone marrow cells, indicating that each has a specific cell surface receptor. However, at 21 degrees C or 37 degrees C, Multi-CSF inhibits binding of the other three CSFs and GM-CSF inhibits binding of G-CSF and M-CSF. Rather than competing directly for receptor binding, the binding of Multi-CSF, GM-CSF, or G-CSF to their own receptor induces the down-modulation (and thus activation) of other CSF receptors at 37 degrees C. The pattern and potency of down-modulation activity exhibited by each type of CSF parallels the pattern and potency of its biological activity. We propose a model in which the biological interactions of the four CSFs are explained by their ability to down-modulate and activate lineage-specific receptors.  相似文献   
53.
Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.  相似文献   
54.
55.
56.
A number of unexplained features of ageing can be accounted for if cellular ageing is due to dominant or co-dominant mutations. The experimental evidence both for and against this hypothesis is weak, but experiments involving direct testing are possible.  相似文献   
57.
Atomic Force Microscopy in Imaging of Viruses and Virus-Infected Cells   总被引:1,自引:0,他引:1  
Summary: Atomic force microscopy (AFM) can visualize almost everything pertinent to structural virology and at resolutions that approach those for electron microscopy (EM). Membranes have been identified, RNA and DNA have been visualized, and large protein assemblies have been resolved into component substructures. Capsids of icosahedral viruses and the icosahedral capsids of enveloped viruses have been seen at high resolution, in some cases sufficiently high to deduce the arrangement of proteins in the capsomeres as well as the triangulation number (T). Viruses have been recorded budding from infected cells and suffering the consequences of a variety of stresses. Mutant viruses have been examined and phenotypes described. Unusual structural features have appeared, and the unexpectedly great amount of structural nonconformity within populations of particles has been documented. Samples may be imaged in air or in fluids (including culture medium or buffer), in situ on cell surfaces, or after histological procedures. AFM is nonintrusive and nondestructive, and it can be applied to soft biological samples, particularly when the tapping mode is employed. In principle, only a single cell or virion need be imaged to learn of its structure, though normally images of as many as is practical are collected. While lateral resolution, limited by the width of the cantilever tip, is a few nanometers, height resolution is exceptional, at approximately 0.5 nm. AFM produces three-dimensional, topological images that accurately depict the surface features of the virus or cell under study. The images resemble common light photographic images and require little interpretation. The structures of viruses observed by AFM are consistent with models derived by X-ray crystallography and cryo-EM.  相似文献   
58.
59.
60.
Neural crest cell differentiation is responsive to a variety of extrinsic signals that include extracellular matrix (ECM) molecules and growth factors. Transforming growth factor-beta (TGF-beta) has diverse, cell type-specific effects, many of which involve regulation of synthesis of ECM molecules and their cell surface receptors. We are studying both separate and potentially interrelated influences of ECM and growth factors on crest differentiation and report here that TGF-beta alters several aspects of crest cell behavior in vitro. Clusters of quail neural crest cells were cultured in the presence and absence of 400 pM TGF-beta 1 and examined at 1, 3, and 5 days. When examined at 5 days, there was a dramatic decrease in the number of melanocytes in treated cultures, regardless of the onset or duration of TGF-beta treatment. With continuous TGF-beta treatment, or with treatment only during crest cluster formation on explanted neural tubes, many cells increased in area, becoming extremely flat. These changes were evident beginning on Day 3. While quantitative analyses of video images documented the size increase, several aspects of motility were relatively unchanged. Synthesis of fibronectin (FN) by approximately 11% of cells on Day 3 and 31% of cells on Day 5 was demonstrated by immunocytochemistry and was associated with a sixfold increase in FN mRNA by Day 5. Experiments which correlated FN immunoreactivity with incorporation of bromodeoxyuridine suggested that the population of large, flat, FN-positive cells did not proliferate selectively and that there was a slower rate of proliferation in TGF-beta-treated cultures than in untreated cultures. The large FN-immunoreactive cells resemble cells derived from cephalic neural crest and raise interesting questions concerning potential roles for TGF-beta in regulating crest differentiation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号