首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  28篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2002年   2篇
  2000年   1篇
  1967年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
The grape weevil, Naupactus xanthographus Germar (Coleoptera: Curculionidae), is a polyphagous insect which is a cause of important damage to several economically relevant crops, including grape (Vitis vinifera) and avocado (Persea americana), in several countries of Latin America. The larvae cause damage to the roots and rootlets of plants, and adults feed on leaves of their host plant. Despite its economic importance, there are few reports on the behavioral and nutritional ecology of this weevil. In this context, laboratory feeding and olfactometer bioassays with N. xanthographus were performed. The feeding performance was evaluated by measuring the weight variation of the insects after 1 and 6 h of feeding on grape or avocado leaves, respectively. After 1 h of feeding, insects showed no significant differences in weight increase. However, after a period of 6 h of feeding, males had continued feeding on grape leaves, but not on avocado leaves. Bioassays using a Y-tube olfactometer showed that males are attracted to volatiles of both host plants. Furthermore, starved males and females showed no preference to volatiles of grape or avocado. However, non-starved males and females preferred grape volatiles over avocado volatiles. Based on the combined results of the assays, we conclude that grape is preferred over avocado for N. xanthographus. Furthermore, this is the first report on the effect of starvation on the attraction to host plant volatiles in Curculionidae.  相似文献   
12.

Background  

Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins.  相似文献   
13.
Until the recent construction of hydroelectric dams, a series of 18 rapids divided the upper and lower Madeira River, and these rapids were thought to separate two species of Amazonian freshwater dolphins (boto): Inia boliviensis (above) and I. geoffrensis (below). Some reports and articles, however, mention the occurrence of botos within the rapids region and that they occasionally cross the rapids, but without mentioning the species concerned. Based on our previous studies, it is likely that I. boliviensis occurs in the region of the rapids. To test this supposition, we sampled 18 individuals from this region, and collected mitochondrial (control region, cytochrome b and cytochrome oxidase I) and nuclear (10 microsatellite loci) DNA data, in order to test if there is connectivity between the dolphins that were found within the rapids region and dolphins collected upstream and downstream of the rapids, and investigate population structuring between these localities. All animals in our study were molecularly identified using three mitochondrial markers as belonging to the species I. boliviensis. Animals upstream of the Teotônio waterfall, the main and highest waterfall of the region, had nuclear genome of I. boliviensis, while most dolphins downstream of the waterfall had nuclear genome of I. geoffrensis. Inia boliviensis collected in the rapids region above the Teotônio waterfall belong to a management unit (MU) distinct from the I. boliviensis MU occupying Bolivian rivers. Downstream of Teotônio waterfall most dolphins are I. boliviensis/geoffrensis hybrids, with remaining individuals being migrant I. boliviensis. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 764–777.  相似文献   
14.
The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new Y ehD f imbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.  相似文献   
15.
Fecal DNA-based 16S ribosomal RNA (rRNA) gene sequencing using next-generation sequencers allows us to understand the dynamic gut microbiome adaptation of animals to their specific habitats. Conventional techniques of fecal microbiome analysis have been developed within the broad contexts defined by human biology; hence, many of these techniques are not immediately applicable to wild nonhuman primates. In order to establish a standard experimental protocol for the analysis of the gut microbiomes of wild animals, we selected the Japanese macaques (Macaca fuscata yakui) on Yakushima Island. We tested different protocols for each stage of fecal sample processing: storage, DNA extraction, and choice of the sequencing region in the bacterial 16S rRNA gene. We also analyzed the gut microbiome of captive Japanese macaques as the control. The comparison of samples obtained from identical macaques but subjected to different protocols showed that the tested storage methods (RNAlater and lysis buffer) produced effectively the same composition of bacterial operational taxonomic units (OTUs) as the standard frozen storage method, although the relative abundance of each OTU was quantitatively affected. Taxonomic assignment of the detected bacterial groups was also significantly affected by the region being sequenced, indicating that sequencing regions and the corresponding polymerase chain reaction (PCR) primer pairs for the 16S rRNA gene should be carefully selected. This study improves the current standard methods for microbiome analysis in wild nonhuman primates. Japanese macaques were shown to be a suitable model for understanding microbiome adaptation to various environments.  相似文献   
16.
17.
Hydrostatic pressure induces the fusion-active state of enveloped viruses.   总被引:3,自引:0,他引:3  
Enveloped animal viruses must undergo membrane fusion to deliver their genome into the host cell. We demonstrate that high pressure inactivates two membrane-enveloped viruses, influenza and Sindbis, by trapping the particles in a fusion-intermediate state. The pressure-induced conformational changes in Sindbis and influenza viruses were followed using intrinsic and extrinsic fluorescence spectroscopy, circular dichroism, and fusion, plaque, and hemagglutination assays. Influenza virus subjected to pressure exposes hydrophobic domains as determined by tryptophan fluorescence and by the binding of bis-8-anilino-1-naphthalenesulfonate, a well established marker of the fusogenic state in influenza virus. Pressure also produced an increase in the fusion activity at neutral pH as monitored by fluorescence resonance energy transfer using lipid vesicles labeled with fluorescence probes. Sindbis virus also underwent conformational changes induced by pressure similar to those in influenza virus, and the increase in fusion activity was followed by pyrene excimer fluorescence of the metabolically labeled virus particles. Overall we show that pressure elicits subtle changes in the whole structure of the enveloped viruses triggering a conformational change that is similar to the change triggered by low pH. Our data strengthen the hypothesis that the native conformation of fusion proteins is metastable, and a cycle of pressure leads to a final state, the fusion-active state, of smaller volume.  相似文献   
18.
β(S) haplotypes were studied in 47 non-related patients with sickle-cell anemia from the state of Rio Grande do Norte, Brazil. Molecular analysis was conducted by PCR/RFLP using restriction endonucleases XmnI, HindIII, HincII and HinfI to analyze six polymorphic sites from the beta cluster. Twenty-seven patients (57.5%) were identified with genotype CAR/CAR, 9 (19.1%) CAR/BEN, 6 (12.8%) CAR/CAM, 1 (2.1%) BEN/BEN, 2 (4.3%) CAR/Atp, 1 (2.1%) BEN/Atp and 1 (2.1%) with genotype Atp/Atp. The greater frequency of Cameroon haplotypes compared to other Brazilian states suggests the existence of a peculiarity of African origin in the state of Rio Grande do Norte.  相似文献   
19.
20.

Background  

Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle) or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition) depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号