首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   14篇
  199篇
  2021年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   9篇
  2009年   3篇
  2008年   9篇
  2007年   10篇
  2006年   13篇
  2005年   13篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1972年   1篇
  1968年   1篇
  1964年   1篇
  1963年   2篇
  1962年   4篇
  1960年   1篇
  1956年   2篇
  1955年   1篇
  1953年   1篇
  1951年   1篇
  1945年   1篇
  1941年   2篇
  1937年   1篇
  1934年   2篇
  1931年   1篇
  1926年   1篇
  1901年   1篇
  1897年   1篇
  1889年   1篇
排序方式: 共有199条查询结果,搜索用时 0 毫秒
21.
22.
Possible role of catalase in post-dormancy bud break in grapevines   总被引:1,自引:0,他引:1  
Changes in the activity of catalase (Cat) and in the levels of H2O2 were followed throughout dormancy in buds of grapevines (Vitis vinifera L.). In grapevines grown in the Elqui valley in Chile, a region with warm-winters, the activity of Cat increased during the recess period of buds, reaching a maximum and thereafter decreased to less than one third of its maximal activity. Three isoforms of Cat were detected in extracts of buds by native PAGE analysis, and the extracted activity was inhibited competitively by hydrogen cyanamide (HC), a potent bud-break agent. Furthermore, HC applications to field-grown grapevines in addition to the expected effect on advancing bud break, reduced the Cat activity during bud dormancy. Similar reductions were observed during dormancy in buds of grapevines grown in the Central valley in Chile, a region with temperate winters, suggesting that HC and winter chilling inhibits the activity of the main H2O2 degrading enzyme in grape buds. A transient rise in H2O2 levels preceded the release of buds from endodormancy, moreover, the peak of H2O2 and the onset of bud break occurred earlier in HC treated than in control grapevines, suggesting the participation of H2O2 as a signal molecule in the release of endodormancy in grape buds. The relationship between Cat inhibition, rise in H2O2 levels and initiation of bud break are discussed.  相似文献   
23.
Existing protein tagging and detection methods are powerful but have drawbacks. Split protein tags can perturb protein solubility or may not work in living cells. Green fluorescent protein (GFP) fusions can misfold or exhibit altered processing. Fluorogenic biarsenical FLaSH or ReASH substrates overcome many of these limitations but require a polycysteine tag motif, a reducing environment and cell transfection or permeabilization. An ideal protein tag would be genetically encoded, would work both in vivo and in vitro, would provide a sensitive analytical signal and would not require external chemical reagents or substrates. One way to accomplish this might be with a split GFP, but the GFP fragments reported thus far are large and fold poorly, require chemical ligation or fused interacting partners to force their association, or require coexpression or co-refolding to produce detectable folded and fluorescent GFP. We have engineered soluble, self-associating fragments of GFP that can be used to tag and detect either soluble or insoluble proteins in living cells or cell lysates. The split GFP system is simple and does not change fusion protein solubility.  相似文献   
24.
Understanding the mechanism of hepatitis C virus (HCV) pathogenesis is an important part of HCV research. Recent experimental evidence suggests that the HCV core protein (HCcAg) has numerous functional activities. These properties suggest that HCcAg, in concert with cellular factors, may contribute to pathogenesis during persistent HCV infection. HCV is capable of infecting cells other than hepatocytes. Although the extrahepatic cellular tropism of HCV may play a role in the pathophysiology of this infection, the precise biological significance of the presence of HCV components in different liver cell types presently remains to be established. In this study, HCcAg was detected in nonparenchymal liver cells of six patients out of eight positive for serum HCV RNA. Immunostaining with anti-HCcAg mAbs revealed the presence of this protein in different liver cell types such as lymphocytes, Kupffer, polymorphonuclear, pit, endothelial, stellate, and fibroblast-like cells. Interestingly, HCcAg was immunolabeled not only in the cytoplasm but also in the nucleus of these cells. Remarkably, HCcAg co-localized with large lipid droplets present in stellate cells and with collagen fibers in the extracellular matrix. Moreover, HCcAg was immunolabeled in bile canaliculus suggesting the involvement of the biliary system in the pathobiology of HCV. Data suggest that nonparenchymal liver cells may constitute a reservoir for HCV replication. Besides, HCcAg may contribute to modulate immune function and fibrosis in the liver as well as steatosis.  相似文献   
25.
26.
The anti-spreading activity of secreted protein acidic and rich in cysteine (SPARC) has been assigned to the C-terminal third domain, a region rich in alpha-helices. This "extracellular calcium-binding" (EC) domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. Recombinant (r) EC, expressed in E. coli, was fused at the C-terminus to a His hexamer and isolated under denaturing conditions by nickel-chelate affinity chromatography. rEC-His was renatured by procedures that simultaneously (i) removed denaturing conditions, (ii) catalyzed disulfide bond isomerization, and (iii) initiated Ca2+-dependent refolding. Intrinsic tryptophan fluorescence and circular dichroism spectroscopies demonstrated that rEC-His exhibited a Ca2+-dependent conformation that was consistent with the known crystal structure. Spreading assays confirmed that rEC-His was biologically active through its ability to inhibit the spreading of freshly plated human urothelial cells propagated from transitional epithelium. rEC-His and rSPARC-His exhibited highly similar anti-spreading activities when measured as a function of concentration or time. In contrast to the wild-type and EC recombinant proteins, rSPARC(E268F)-His, a point substitution mutant at the Z position of EF-hand 2, failed to exhibit both Ca2+-dependent changes in alpha-helical secondary structure and anti-spreading activity. The collective data provide evidence that the motif of SPARC responsible for anti-spreading activity was dependent on the coordination of Ca2+ by a Glu residue at the Z position of EF-hand 2 and provide insights into how adhesive forces are balanced within the extracellular matrix of urothelial cells. .  相似文献   
27.
Abstract

Using the Weeks-Chandler-Andersen separation of the intermolecular potential we have fitted computer simulation data for Lennard-Jones system for the whole phase plane to the same form expression but in two different ways: locally and globally. We compare the efficacy and the exactness of both methods.  相似文献   
28.
29.
The three‐dimensional structure of Rv2607, a putative pyridoxine 5′‐phosphate oxidase (PNPOx) from Mycobacterium tuberculosis, has been determined by X‐ray crystallography to 2.5 Å resolution. Rv2607 has a core domain similar to known PNPOx structures with a flavin mononucleotide (FMN) cofactor. Electron density for two FMN at the dimer interface is weak despite the bright yellow color of the protein solution and crystal. The shape and size of the putative binding pocket is markedly different from that of members of the PNPOx family, which may indicate some significant changes in the FMN binding mode of this protein relative to members of the family. Proteins 2006. © 2005 Wiley‐Liss, Inc.  相似文献   
30.
The structure of MtrA, an essential gene product for the human pathogen Mycobacterium tuberculosis, has been solved to a resolution of 2.1 A. MtrA is a member of the OmpR/PhoB family of response regulators and represents the fourth family member for which a structure of the protein in its inactive state has been determined. As is true for all OmpR/PhoB family members, MtrA possesses an N-terminal regulatory domain and a C-terminal winged helix-turn-helix DNA-binding domain, with phosphorylation of the regulatory domain modulating the activity of the protein. In the inactive form of MtrA, these two domains form an extensive interface that is composed of the alpha4-beta5-alpha5 face of the regulatory domain and the C-terminal end of the positioning helix, the trans-activation loop, and the recognition helix of the DNA-binding domain. This domain orientation suggests a mechanism of mutual inhibition by the two domains. Activation of MtrA would require a disruption of this interface to allow the alpha4-beta5-alpha5 face of the regulatory domain to form the intermolecule interactions that are associated with the active state and to allow the recognition helix to interact with DNA. Furthermore, the interface appears to stabilize the inactive conformation of MtrA, potentially reducing the rate of phosphorylation of the N-terminal domain. This combination of effects may form a switch, regulating the activity of MtrA. The domain orientation exhibited by MtrA also provides a rationale for the variation in linker length that is observed within the OmpR/PhoB family of response regulators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号