首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   30篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   13篇
  2013年   29篇
  2012年   28篇
  2011年   30篇
  2010年   15篇
  2009年   18篇
  2008年   29篇
  2007年   23篇
  2006年   28篇
  2005年   21篇
  2004年   27篇
  2003年   26篇
  2002年   19篇
  2001年   10篇
  2000年   22篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   17篇
  1991年   12篇
  1990年   9篇
  1989年   16篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1975年   1篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1965年   2篇
排序方式: 共有548条查询结果,搜索用时 31 毫秒
441.
The innate immune system constitutes the first line of defence against microorganisms and plays a primordial role in the activation and regulation of adaptive immunity. The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These fluid-phase PRMs represent the functional ancestors of antibodies and play a crucial role in the discrimination between self, non-self and modified-self. Moreover, evidence has been presented that these soluble PRMs participate in the regulation of inflammatory responses and interact with the cellular arm of the innate immune system. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. Based on the primary structure of the protomer, pentraxins are divided into two groups: short pentraxins and long pentraxins. The short pentraxins C-reactive protein and serum amyloid P-component are produced by the liver and represent the main acute phase proteins in human and mouse, respectively. The long pentraxin PTX3 is produced by innate immunity cells (e.g. PMN, macrophages, dendritic cells), interacts with several ligands and plays an essential role in innate immunity, tuning inflammation and matrix deposition. PTX3 provides a paradigm for the mode of action of humoral innate immunity.  相似文献   
442.
This study investigated the leaf structure of Bromelia and its importance for understanding the evolution of Bromelioideae (Bromeliaceae). Because of the scarcity of informative molecular characters in Bromeliaceae, this study evaluates the relevance of anatomical characters for the taxonomy and phylogeny of Bromelia and the subfamily Bromelioideae. Anatomical studies in monocots have shown that the combined application of anatomical and external morphological characters from leaf structure can improve the taxonomic delimitation of species, genera and subgenera, and is very informative for inferring phylogenies. The current study analyzed the leaves of 27 species of Bromelia and found that the most important characters for the systematics of this group are the occurrence of a water storage hypodermis, the number of stalk cells of peltate scales, the presence of a ribbed abaxial surface, the occurrence of palisade parenchyma on the adaxial side, the shape of the cells that surround the air lacunae, the presence of raphides and secretory channels, and the occurrence of fibrous extensions on the bundle sheath on minor veins. Combining our results with those described for the family, we made a list of the anatomical characters that can be used in phylogenetic studies of Bromelioideae.  相似文献   
443.
The worldwide distributed genus Monochamus Megerle, 1821 (Coleoptera Cerambicydae) comprises beetles that may become pests of economic importance in conifer stands in the Nearctic and Palearctic Regions. Besides direct damage due to the larval tunnelling habits, they have also been recognized as main vectors of the phytoparasitic nematode Bursaphelenchus xylophilus (Steiner & Buhrer, 1934) (Nematoda Aphelenchoididae). We analysed the complete mitochondrial cytochrome oxidase I gene and a fragment of the small subunit RNA gene sequences (1536 base pairs) in the five European species. These are: Monochamus galloprovincialis (Olivier, 1795), morphologically distinguished in two subspecies M. galloprovincialis galloprovincialis (Olivier, 1795) and M. galloprovincialis pistor (Germar, 1818); Monochamus sutor (Linneus 1758); Monochamus saltuarius (Gebler 1830); Monochamus sartor (Fabricius, 1787) and Monochamus urussovi (Fischer, 1806). For appropriate comparisons, also the Asiatic Monochamus alternatus Hope, 1842 and a Japanese M. saltuarius sample have been analysed. Both genes show an absolute identity between the two subspecies of M. galloprovincialis and a strong affinity between M. sartor and M. urussovi: the morphological subdivisions of the former taxon in two subspecies and of the latter in two entities of specific level are therefore not supported genetically. On the other hand, the Italian and the Japanese samples of M. saltuarius always cluster together in all trees, and for the remaining taxa, no doubt about their rank of specific differentiation emerges from present analyses. From a phyletic point of view, tree topology indicates the Japanese M. alternatus as the most differentiated taxon and the Euroasiatic M. saltuarius as basal to all other strictly European entities. Chromosome analyses show that the diploid autosomal complement ranges from 18 in M. saltuarius to 20 in M. galloprovincialis, and 22 in M. sartor, but a XX–Xyp sex determining system is shared by all analysed taxa. The M. saltuarius karyotype appears as the most primitive from which the others may be derived through Robertsonian fissions. Karyological data therefore agree with molecular analyses in indicating a basal position of Euroasiatic M. saltuarius with respect to the group of European Monochamus taxa; among these, M. galloprovincialis and M. sartor represent two clearly diverging evolutionary units. Furthermore, karyotype analyses substantiate molecular conclusions about the identity between M. galloprovincialis galloprovincialis and M. galloprovincialis pistor.  相似文献   
444.
Mantovani B. Cesari M. & Scanabissi F. (2004). Molecular taxonomy and phylogeny of the 'living fossil' lineages Triops and Lepidurus (Branchiopoda: Notostraca). — Zoologica Scripta , 33 , 367–374.
European Triops cancriformis and Lepidurus apus were analysed for 12S and 16S mitochondrial genes and compared to North American and Japanese taxa. There are no cryptic species among European T. cancriformis populations , which are highly homogeneous in comparison to conspecific Japanese samples. T. cancriformis differs from congeneric taxa all over its range, which can be explained by its antiquity. In contrast, the parapatric subspecies L. apus apus and L. apus lubbocki are morphologically conserved and differ substantially at the mtDNA level. The genetic distance values between them are of the same order of magnitude as those observed between American Lepidurus species. Their subspecific status therefore requires further analysis. L. apus apus is more closely related to a L. arcticus sample from Iceland than to L. apus lubbocki . It is also related to a Canadian L. couesii population. Further analyses of populations from the whole range of L. arcticus and the European range of L. couesii are needed to understand the relationships among these notostracan taxa. When considering the two genera, it is clear that Lepidurus is a well supported monophyletic unit, while Triops is polyphyletic, embodying very divergent taxa.  相似文献   
445.
446.
It has been shown that human endothelial cells (HEC) are stimulated to migrate and proliferate by granulocyte (G)- and granulocyte-macrophage (GM)-colony-stimulating factor (CSF) (Bussolino, F., Wang, J. M., Defilipii, P. Turrini, F., Sanavio, F., Edgell, C.-J. S., Aglietta, M., Arese, P., and Mantovani, A. (1989) Nature 337, 471-473). The rapid intracellular events initiated by these cytokines on binding to their receptors on HEC are not defined. Addition of G- or GM-CSF to HEC produced a rapid activation of Na+/H+ exchanger resulting in an increase in intracellular pH (pHi). Both cytokines induced an alkaline displacement in the pHi dependence of the exchanger without affecting the affinity for external Na+ (Nao) and the rate of exchanger. Ethylisopropylamiloride, a selective inhibitor of the Na+/H+ exchanger, inhibited the intracellular alkalinization, the migration, and proliferation induced by G- and GM-CSF. The data indicate that G- and GM-CSF initiate a rapid exchange of Na+ and H+ by means of the Na+/H+ exchanger and that this ethylisopropylamiloride-sensitive ions flux is important to the biological effects of these cytokines on HEC.  相似文献   
447.
Rare species are one of the principal components of the species richness and diversity encountered in Dense Ombrophilous Tropical Forests. This study sought to analyze the rare canopy species within the Atlantic Coastal Forest in Rio de Janeiro State, Brazil. Six different communities were examined: Dense Ombrophilous alluvial Forest; Dense sub-montane Ombrophilous Forest; Dense Montane Ombrophilous in Serra do Mar and Serra da Mantiqueira. In each area the vegetation was sampled within forty 10 × 25 m plots alternately distributed along a linear transect. All trees with DBH (1.3 m above ground level) ≥5 cm were sampled. The canopy was characterized using the allometric relationship between diameter and height, and included all trees with BDH ≥10 cm and height ≥10 m. A total of 64 families, 206 genera, and 542 species were sampled, of which 297 (54.8%) represented rare species (less than one individual per hectare). The percentage of rare species varied from 34 to 50% in each of the different communities sampled. A majority of these rare trees belonged to the Rosidae, and a smaller proportion to the Dilleniidae. It was concluded that there was no apparent pattern to rarity among families, that rarity was probably derived from a number of processes (such as gap formation), and that a great majority of the rare species sampled were consistently rare. This indicates that the restricted geographic distribution and high degree of endemism of many arboreal taxa justifies the conservation of even small fragments of Atlantic Forest.  相似文献   
448.
449.
The long pentraxin 3 (PTX3) is a multifunctional soluble pattern recognition molecule that is crucial in innate immune protection against opportunistic fungal pathogens such as Aspergillus fumigatus. The mechanisms that mediate downstream effects of PTX3 are largely unknown. However, PTX3 interacts with C1q from the classical pathway of the complement. The ficolins are recognition molecules of the lectin complement pathway sharing structural and functional characteristics with C1q. Thus, we investigated whether the ficolins (Ficolin-1, -2, and -3) interact with PTX3 and whether the complexes are able to modulate complement activation on A. fumigatus. Ficolin-2 could be affinity-isolated from human plasma on immobilized PTX3. In binding studies, Ficolin-1 and particularly Ficolin-2 interacted with PTX3 in a calcium-independent manner. Ficolin-2, but not Ficolin-1 and Ficolin-3, bound A. fumigatus directly, but this binding was enhanced by PTX3 and vice versa. Ficolin-2-dependent complement deposition on the surface of A. fumigatus was enhanced by PTX3. A polymorphism in the FCN2 gene causing a T236M amino acid change in the fibrinogen-like binding domain of Ficolin-2, which affects the binding to GlcNAc, reduced Ficolin-2 binding to PTX3 and A. fumigatus significantly. These results demonstrate that PTX3 and Ficolin-2 may recruit each other on pathogens. The effect was alleviated by a common amino acid change in the fibrinogen-like domain of Ficolin-2. Thus, components of the humoral innate immune system, which activate different complement pathways, cooperate and amplify microbial recognition and effector functions.The ficolins are multimeric collagen-like proteins consisting of an N-terminal domain, a collagen-like domain (CD),2 and a C-terminal fibrinogen-like (FBG) domain involved in innate immune defense (1, 2). In humans, three types of ficolins have been identified as follows: Ficolin-1 (M-ficolin), Ficolin-2 (L-ficolin), and Ficolin-3 (H-ficolin/Hakata antigen). They function as recognition molecules in the lectin complement pathway along with mannose-binding lectin but with differentiated complement activating capacity (3). Ficolin-2 and Ficolin-3 circulate in the blood with a median concentration of 5 and 25 μg/ml, respectively (4, 5). Ficolin-2 is mainly produced in the liver, whereas Ficolin-3 is synthesized in both the liver and lungs, with the highest expression in the lungs (3). Ficolin-1 is primarily expressed by bone marrow-derived cells and lung epithelial cells (3, 68) and has recently been shown to be present in the blood with a median plasma concentration of 60 ng/ml (9). The ficolin genes (FCN1, -2, and -3) are polymorphic, and particularly polymorphisms in FCN2 regulate both the level and function of Ficolin-2 (4, 10, 11). In this respect, a base substitution in exon 8 at position 6359 (C→T) causing a threonine to be replaced by a methionine (T236M) in the FBG domain of Ficolin-2 has been shown to cause decreased binding activity toward GlcNAc (10).Ficolin-1 has been reported to bind to GlcNAc, GalNAc, and sialic acid (8, 12). It may opsonize Staphylococcus aureus via GlcNAc and interact with a smooth-type strain of Salmonella typhimurium through an unknown ligand, the binding of which is not diminished by GlcNAc (8). Ficolin-2 has been shown to recognize specific pathogen-associated molecular patterns, which are typically located in pathogen cell membranes, such as lipoteichoic acid and peptidoglycan in Gram-positive bacteria cell walls, lipopolysaccharide in Gram-negative bacteria cell walls, and 1,3-β-d-glucan in yeast and fungal cell walls (13, 14). The ligand specificity of Ficolin-2 has also been defined as acetyl groups, including those of N-acetylmannosamine, GlcNAc, GalNAc as well as acetyl groups on cysteine, glycine, and choline (15). Ficolin-2 recognizes clinically important pathogens, like S. typhimurium, S. aureus, and Streptococcus pneumoniae (13, 16, 17). Ficolin-3 shows affinity for GlcNAc, GalNAc, and d-fucose and may interact with S. typhimurium, Salmonella minnesota, and Aerococcus viridans (17, 18).The long pentraxin 3 (PTX3) is a soluble pattern recognition molecule mediating innate immune recognition (19). PTX3 is a glycoprotein of 45 kDa, which assembles into an octameric structure through protomer linkage by disulfide bonds (20). PTX3 shares C-terminal structural similarity with the classic short pentraxins, C-reactive protein (CRP), and serum amyloid P component, whereas the N-terminal sequence differs from the other proteins (21). Myeloid cells are a major source of PTX3, but PTX3 has also been shown in vitro to be produced by a variety of cells in response to inflammatory signals (21). During inflammation PTX3 is rapidly up-regulated and released into the surrounding tissue and into the bloodstream. PTX3 interacts with C1q and participates in activation of the classical complement pathway (22, 23). Moreover, it has also been shown that PTX3 binds the complement regulatory factor H and that this interaction regulates the alternative pathway of complement (24).PTX3 can interact with a number of different pathogens, bacteria as well as fungi and viruses. A specific binding has been observed for selected Gram-positive and Gram-negative bacteria, including S. aureus, Pseudomonas aeruginosa, S. typhimurium, Klebsiella pneumoniae, S. pneumoniae, and Neisseria meningitidis (21). PTX3 also binds zymosan and conidia from Aspergillus fumigatus) (25). Furthermore, it has been shown that ptx3 knock-out mice are extremely susceptible to invasive pulmonary aspergillosis. The phenotypic defect can be completely reversed by treatment with recombinant PTX3 (25, 26). These data indicate that PTX3 is important in protection against A. fumigatus, which has become a major cause of morbidity in medical institutions because of the increasing number of immunosuppressed patients (27).Based on the knowledge of the structural and functional similarities between C1q and the ficolins, this study was designed to characterize a possible interaction between the ficolins and PTX3 using A. fumigatus as a model. Based on our data, we propose an important role for previously unlinked collaboration of PTX3 and Ficolin-2, but not Ficolin-1 and Ficolin-3, in the recognition of A. fumigatus and amplification of complement activation. Moreover, our results demonstrate functional consequences of the Ficolin-2 T236M substitution in the interaction between PTX3 and A. fumigatus.  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号