首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   28篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   7篇
  2015年   26篇
  2014年   24篇
  2013年   30篇
  2012年   41篇
  2011年   33篇
  2010年   19篇
  2009年   19篇
  2008年   24篇
  2007年   26篇
  2006年   24篇
  2005年   28篇
  2004年   22篇
  2003年   22篇
  2002年   20篇
  2001年   5篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1980年   3篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1964年   1篇
  1958年   1篇
  1953年   1篇
  1946年   1篇
  1941年   2篇
  1940年   1篇
  1939年   1篇
  1930年   1篇
  1909年   1篇
排序方式: 共有476条查询结果,搜索用时 15 毫秒
441.
Erythritol is an important natural sweetener, industrially produced only by fermentation on glucose media. Glycerol is an important renewable feedstock as it is the major by-product of the biodiesel production process; here we present an alternative way to convert this low-cost substrate into value-added products, such as erythritol. Repeated batch cultures (RBC) were performed to improve the productivity of erythritol from pure and crude glycerol. An acetate negative mutant of Yarrowia lipolytica Wratislavia K1 was found to be applicable for the production of high amounts of erythritol in RBC. When 20 % of fresh replaced medium was added, the strain Wratislavia K1 was able to produce 220 g l ?1 erythritol, which corresponded to a 0.43 g g?1 yield and a productivity of 0.54 g l?1 h?1. Additionally, the activity of the culture remained stable for more than 1,000 h, i.e., 11 cycles of the repeated batch bioreactors.  相似文献   
442.
443.
Plant antimicrobial peptides   总被引:1,自引:0,他引:1  
Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.  相似文献   
444.
Streptococcus pneumoniae has unusually complex cell wall teichoic acid and lipoteichoic acid, both of which contain a ribitol phosphate moiety. The lic region of the pneumococcal genome contains genes for the uptake and activation of choline, the attachment of phosphorylcholine to teichoic acid precursors, and the transport of these precursors across the cytoplasmic membrane. The role of two other, so far uncharacterized, genes, spr1148 and spr1149, in the lic region was determined. TarJ (spr1148) encodes an NADPH-dependent alcohol dehydrogenase for the synthesis of ribitol 5-phosphate from ribulose 5-phosphate. TarI (spr1149) encodes a cytidylyl transferase for the synthesis of cytidine 5′-diphosphate (CDP)-ribitol from ribitol 5-phosphate and cytidine 5′-triphosphate. We also present the crystal structure of TarI with and without bound CDP, and the structures present a rationale for the substrate specificity of this key enzyme. No transformants were obtained with insertion plasmids designed to interrupt the tarIJ genes, indicating that their function could be essential for cell growth. CDP-activated ribitol is a precursor for the synthesis of pneumococcal teichoic acids and some of the capsular polysaccharides. Thus, all eight genes in the lic region have a role in teichoic acid synthesis.  相似文献   
445.
The ovarian surface epithelium (OSE) is the precursor of common epithelial ovarian carcinomas. In the present study, we examined the molecular mechanisms and possible physiological basis for the propensity of OSE cells to undergo epithelio-mesenchymal transition (EMT) in response to environmental influences. We hypothesized that EMT may be a homeostatic mechanism that permits displaced OSE to assume a stromal phenotype within the ovarian cortex. We report that EGF in conjunction with hydrocortisone is the EMT-inducing factor of OSE as shown by changes to a fibroblast-like morphology and growth pattern. EGF increased cell motility, enhanced the activities of secreted pro-matrix metalloproteinase (MMP)-2 and -9, and enhanced expression and activation of Erk and integrin-linked kinase (ILK). Increased ILK expression correlated with the activation of PKB/Akt, the phosphorylation of GSK-3, and the increased expression of cyclin E and cdk2 kinase. EGF withdrawal resulted in a more epithelial morphology and reversal of the EGF-induced activation of signaling pathways and pro-MMP activity. In contrast, treatment of EGF-treated cells with specific inhibitors of phosphatidylinositol 3-kinase, Mek, or ILK inhibited the inhibitor-specific pathways. The inhibitors caused suppression of EGF-induced migration and pro-MMP-2/-9 activities but did not lead to any change in EGF-induced mesenchymal morphology. ILK small interfering RNA inhibited Akt phosphorylation and reduced pro-MMP-2/-9 activities but had no effect on Erk activation or cell morphology. These results indicate that the EGF-induced morphological and functional changes in OSE cells are controlled by distinct signaling mechanisms working in concert. EMT of OSE cells displaced by ovulation likely permits their survival and integration with a fibroblast-like identity within the stroma. Failure to do so may lead to the formation of epithelium-derived inclusion cysts, which are known preferential sites of malignant transformation. epidermal growth factor; migration; invasion  相似文献   
446.
During division of Gram‐negative bacteria, invagination of the cytoplasmic membrane and inward growth of the peptidoglycan (PG) are followed by the cleavage of connective septal PG to allow cell separation. This PG splitting process requires temporal and spatial regulation of cell wall hydrolases. In Escherichia coli, LytM factors play an important role in PG splitting. Here we identify and characterize a member of this family (DipM) in Caulobacter crescentus. Unlike its E. coli counterparts, DipM is essential for viability under fast‐growth conditions. Under slow‐growth conditions, the ΔdipM mutant displays severe defects in cell division and FtsZ constriction. Consistent with its function in division, DipM colocalizes with the FtsZ ring during the cell cycle. Mutagenesis suggests that the LytM domain of DipM is essential for protein function, despite being non‐canonical. DipM also carries two tandems of the PG‐binding LysM domain that are sufficient for FtsZ ring localization. Localization and fluorescence recovery after photobleaching microscopy experiments suggest that DipM localization is mediated, at least in part, by the ability of the LysM tandems to distinguish septal, multilayered PG from non‐septal, monolayered PG.  相似文献   
447.
Seeds of yellow lupine (Lupinus luteus L. cv. Juno) were collected throughout their development on the mother plant to determine whether the ability to germinate and to tolerate desiccation is related to the level of free radicals and the changes in the redox state of ascorbate and glutathione as well as the activities of antioxidative enzymes. Electron paramagnetic resonance (EPR)-based analyses showed that development of lupine seed was accompanied by generation of free radicals with g1 and g2 values of 2.0049 ± 0.0004 and 2.0029 ± 0.0003, respectively. Free radical level increased significantly 25 DAF and decreased thereafter. The amount of hydrogen peroxide was high in fresh immature seeds and decreased during maturation drying. Ascorbate accumulated in lupine embryos during early seed filling stage whereas glutathione content increased during late seed filling phase. During maturation drying the redox state of both ascorbate and glutathione pools shifted towards the oxidized forms. While superoxide dismutase (SOD, EC 1.15.1.1), and ascorbate peroxidase (APX, EC 1.11.1.11) activities remained high at the early seed filling stage the activities of both dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) and that of catalase (CAT, EC 1.11.1.6) increased before seeds reached physiological maturity and decreased thereafter. The changes of isoform patterns of antioxidative enzymes were observed during seed maturation. Immature lupine seeds tested immediately after harvest acquired the ability to germinate when less than half-filled and reached high tolerance to desiccation just after physiological maturity. The physiological implications of the changes in antioxidative machinery for the acquisition of desiccation tolerance and seeds germinability are discussed.  相似文献   
448.
The molecular mechanisms underlying cell growth, cell division and pathogenesis in Streptococcus pneumoniae are still not fully understood. Single-cell methodologies are potentially of great value to investigate S. pneumoniae cell biology. Here, we report the construction of novel plasmids for single and double cross-over integration of functional fusions to the gene encoding a fast folding variant of the green fluorescent protein (GFP) into the S. pneumoniae chromosome. We have also established a zinc-inducible system for the fine control of gfp -fusion gene expression and for protein depletion experiments in S. pneumoniae . Using this novel single cell toolkit, we have examined the cellular localization of the proteins involved in the essential process of choline decoration of S. pneumoniae teichoic acid. GFP fusions to LicA and LicC, enzymes involved in the activation of choline, showed a cytoplasmic distribution, as predicted from their primary sequences. A GFP fusion to the choline importer protein LicB showed clear membrane localization. GFP fusions to LicD1 and LicD2, enzymes responsible for loading of teichoic acid subunits with choline, are also membrane-associated, even though both proteins lack any obvious membrane spanning domain. These results indicate that the decoration of teichoic acid by the LicD enzymes is a membrane-associated process presumably occurring at lipid-linked teichoic acid precursors.  相似文献   
449.
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force‐unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号